<span>To work out the volume of something from its density, use the compound measures triangle: mass over density and volume. To find volume that the beaker holds, divide the mass by the density. V = (388.15 - 39.09)/1. V = 349.06g/cm3. To find the weight of the beaker and the contents, first work out the weight (mass) of the mercury, with this formula: mass = d x v. M = 13.5 x 349.06. M = 4712.31. Then add on the weight of the beaker (39.09g). The total weight is 4751.40g.</span>
1.806x10^24
Written equation form(always start the equation off with what you know based off of the question!):
3mol(CCl4)•6.022x10^23/1mol = 1.806x10^24
Good luck!
Answer:
a weak bond between two molecules resulting from an electrostatic attraction between a proton in one molecule and an electronegative atom in the other.
Explanation:
For example, in water molecules (H2O), hydrogen is covalently bonded to the more electronegative oxygen atom. Therefore, hydrogen bonding arises in water molecules due to the dipole-dipole interactions between the hydrogen atom of one water molecule and the oxygen atom of another H2O molecule.
Answer:
We will expect 4 moles of MgO to be formed (option b).
Explanation:
Step 1: The balanced equation
2Mg + O2 → 2MgO
Step 2: Data given
Number of moles of Magnesium = 4 moles
Oxygen = in excess → this means Magnesium is the limiting reactant
Magnesium will completely be consumed ( 4 moles). There will remain 0 moles.
For 2 moles of magnesium consumed, we need 1 mole of oxygen to produce 2 moles of MgO.
For 4 moles of magnesium, we need 4/2 = 2 moles of oxygen.
For 4 moles of magnesium, we will produce 4/1 = 4 moles of MgO
We will expect 4 moles of MgO to be formed (option b).
Explanation:
elements are based on electrical conductivity