Answer:
0° C
Explanation:
Given that
Mass of ice, m = 50g
Mass of water, m(w) = 50g
Temperature of ice, T(i) = 0° C
Temperature of water, T(w) = 80° C
Also, it is known that
Specific heat of water, c = 1 cal/g/°C
Latent heat of ice, L(w) = 89 cal/g
Let us assume T to be the final temperature of mixture.
This makes the energy balance equation:
Heat gained by ice to change itself into water + heat gained by melted ice(water) to raise its temperature at T° C = heat lost by water to reach at T° C
m(i).L(i) + m(i).c(w)[T - 0] = m(w).c(w)[80 - T], on substituting, we have
50 * 80 + 50 * 1(T - 0) = 50 * 1(80 - T)
4000 + 50T = 4000 - 50T
0 = 100 T
T = 0° C
Thus, the final temperature is 0° C
The level of greenhouse gases in our atmosphere would decrease, due to less automobiles.
I'm not sure I completely understand the expression you want evaluated.
It looks like a fraction with the same exact thing in both the numerator and the denominator. A fraction like that always boils down to ' 1 '.
Answer:
Incomplete questions
Let assume we are asked to find
Calculate the induced emf in the coil at any time, let say t=2
And induced current
Explanation:
Flux is given as
Φ=NAB
Where
N is number of turn, N=1
A=area=πr²
Since r=2cm=0.02
A=π(0.02)²=0.001257m²
B=magnetic field
B(t)=Bo•e−t/τ,
Where Bo=3T
τ=0.5s
B(t)=3e(−t/0.5)
B(t)=3exp(-2t)
Therefore
Φ=NAB
Φ=0.001257×3•exp(-2t)
Φ=0.00377exp(-2t)
Now,
Induce emf is given as
E= - dΦ/dt
E= - 0.00377×-2 exp(-2t)
E=0.00754exp(-2t)
At t=2
E=0.00754exp(-4)
E=0.000138V
E=0.138mV
b. Induce current
From ohms laws
V=iR
Given that R=0.6Ω
i=V/R
i=0.000138/0.6
i=0.00023A
i=0.23mA
Answer:
The density of plastic is equal to 0.6 g/mL.
Explanation:
Given that,
The mass of piece of plastic, m = 15 g
It is placed in a graduated cylinder. The water level in the graduated cylinder rises from 30 mL to 55 mL when the plastic is added.
We need to find the density of plastic.
Rise in volume = 55 mL - 30 mL
= 25 mL
The density of an object is given by :
So, the density of plastic is equal to 0.6 g/mL.