<h2>
Answer: Earth's orbital path around the Sun</h2><h2>
</h2>
The <u>Ecliptic</u> refers to the orbit of the Earth around the Sun. Therefore, <u>for an observer on Earth it will be the apparent path of the Sun in the sky during the year, with respect to the "immobile background" of the other stars.</u>
<u />
It should be noted that the ecliptic plane (which is the same orbital plane of the Earth in its translation movement) is tilted with respect to the equator of the planet about
approximately. This is due to the inclination of the Earth's axis.
Hence, the correct option is Earth's orbital path around the Sun.
Answer:
1.71
Explanation:
the parabolic movment is described by the following equation:

where y is the height of the ball, a is the angle of launch,
the initial velocity, g the gravity and x is the horizontal distance of the ball.
So, if we want that the ball reach the hood, we will replace values on the equation as:

Finally, solving for
, we get:

1.71
Answer:
The current in the second wire is 8.33 A and the two currents are flowing in the opposite directions
Explanation:
Given that,
The separation between two long parallel wires, d = 2.5 cm
The force per unit length that each wire exerts on the other is, 
The current in one wire, 
(a) The force per unit length of the wire is given by :

On putting all the values we get :


So, the current in the second wire is 8.33 A.
(b) It is given that, both the wires repel each other, so the current in other wire is flowing in the opposite direction of the current in the first wire.
Hence, this is the required solution.