Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
Answer:
A. Diethyl ether will react with the alkenes that were formed in the experiment.
Explanation:
Ethers such as diethyl ether dissolve a wide range of polar and nonpolar organic compounds. Nonpolar compounds are generally more soluble in diethyl ether than alcohols because ethers do not have a hydrogen bonding network that must be broken up to dissolve the solute.
Formula units in 450 g of is 1.93 × 10²⁴ formula units.
<u>Explanation:</u>
First we have to find the number of moles in the given mass by dividing the mass by its molar mass as,
Now, we have to multiply the number of moles of Na₂SO₄ by the Avogadro's number, 6.022 × 10²³ formula units/mol, so we will get the number of formula units present in the given mass of the compound.
3.2 mol × 6.022 × 10²³ = 1.93 × 10²⁴ formula units.
So, 1.93 × 10²⁴ formula units is present in 450g of Na₂SO₄.
Found the choices. Pls see attachment.
The statements that explains this phenomenon are:
1) DNA contains adenine as one of its nitrogenous bases.
2) DNA has a double-stranded structure that ensures an accurate mechanism of duplication.