No, work is not done whenever you hold a heavy object for a long time
<h3>What is work done ?</h3>
The result of a force's displacement and its component of force exerted by the object in the direction of displacement is what is known as the force's work. When we push a block with some force, the body moves quickly and work is completed.
- No work, as that term is used here, is done until the object is moved in some way and a component of the force travels along the path that the object is moved. Because there is no displacement when holding a heavy object still, energy is not transferred to it.
Learn more about Work done here:
brainly.com/question/25573309
#SPJ4
...............................................c
Answer : The value of
at this temperature is 66.7
Explanation : Given,
Pressure of
at equilibrium = 0.348 atm
Pressure of
at equilibrium = 0.441 atm
Pressure of
at equilibrium = 10.24 atm
The balanced equilibrium reaction is,

The expression of equilibrium constant
for the reaction will be:

Now put all the values in this expression, we get :


Therefore, the value of
at this temperature is 66.7
Answer:
Elements form compounds to satisfy the octet rule. Noble gasses never form compounds because they already satisfy the octet rule.
Explanation:
The octet Rule is the theory that an element will attempt to gain a valence of 8 by binding with another element in it's vicinity. This can happen in a variety of ways, but the main thing to remember is that they will take the "shortest path" to 8(I.e an element will sometimes lose an electron or 2 if it has a valence 1 or 2 to loop back around to 8, while an element with a valence of 6 or 7 will attempt to gain 2 or 1 electrons).
Valence of elements can be counted by group in the image attached.
Group 1 has a valence of 1, Group 2 has a valence of 2, then we move to group 13 which has a valence of 3, group 14 has a valence of 4, group 15 has a valence of 5, group 16 has 6, group 17 has 7, and group 18 is the noble gasses which have 8.
The answer is B, you just check if it is the same on the left and right side
A:
Left side - Right side
2xH - 2xH
1xS - 3xS
4xO - 12xO
2xAl - 2xAl
Therefore A is not correct
B:
Left side - right side
2xK - 2xK
1xCl - 1xCl
1xPb - 1xPb
2xN - 2xN
6xO - 6xO
B is therefore correct as both sides add up