Given:3.40g sample of the steel used to produce 250.0 mLSolution containing Cr2O72−
Assuming all the Cr is contained in the BaCrO4 at the end.
(0.145 g BaCrO4) / (253.3216 g BaCrO4/mol) x (250.0 mL / 10.0 mL) x (1 mol Cr / 1 mol BaCrO4) x (51.99616 g Cr/mol / (3.40 g) = 0.219 = 21.9% Cr
Evaporation technique is used to separate a compound dissolved in a solvent by vaporizing the solvent and converting it to gaseous state. This leaves behind the solid residue present in the solution after the pure solvent is vaporized. The solvent vapors can be collected and condensed to get pure solvent. But the solid residue cannot be considered pure as it is the left over solid after all the solvent is evaporated. If the solution has some impurities, the solid left over includes all of the impurities. So, we cannot obtain a pure solid in evaporation technique.
Answer:
Looks like they're all right
Answer:
The entropy of the final solution decreases, as the reaction disorder is less.
Explanation:
The higher the temperature, the greater the heat of the reaction and the greater the disorder it has, so the entropy will increase ... But this is not the case, since the solution cools, decreasing the entropy proportionally.