Answer:
The equilibrium partial pressure of O2 is 0.545 atm
Explanation:
Step 1: Data given
Partial pressure of SO2 = 0.409 atm
Partial pressure of O2 = 0.601 atm
At equilibrium, the partial pressure of SO2 was 0.297 atm.
Step 2: The balanced equation
2SO2 + O2 ⇆ 2SO3
Step 3: The initial pressure
pSO2 = 0.409 atm
pO2 = 0.601 atm
pSO3 = 0 atm
Step 4: Calculate the pressure at the equilibrium
pSO2 = 0.409 - 2X atm
pO2 = 0.601 - X atm
pSO3 = 2X
pSO2 = 0.409 - 2X atm = 0.297
X = 0.056 atm
pO2 = 0.601 - 0.056 = 0.545 atm
pSO3 = 2*0.056 = 0.112 atm
Step 5: Calculate Kp
Kp = (pSO3)²/((pO2)*(pSO2)²)
Kp = (0.112²) / (0.545 * 0.297²)
Kp = 0.261
The equilibrium partial pressure of O2 is 0.545 atm
Answer: high pressure because it's stable
Explanation:
Air mass is volume of air which has stable temperature, humidity and pressure horizontally. Over time, each air mass acquires properties of the region by residing over same part of a surface.
Areas of low pressure and high pressure occur where there is warm air and cold air respectively. An air mass usually forms over an area of high pressure. Warm air rises up and cold air takes its place. Warm air has low density and low pressure where as cold air has high density and pressure and therefore, sinks to the bottom. This is a stable condition. The movement of air mass is responsible for maintenance of temperature conditions on Earth.
Higher temperature = higher energy. In water it is a liquid as the particles have more energy so vibrate and are further away from each other.
Answer:
1 Atm
Explanation:
Dalton's law
The total pressure is 3 Atm so all you have to do is subtract the other partial pressures from 3