Answer:
they got protons, electrons, and neutrons
Explanation:
The empirical formula of a compound is determined to be CH2O, and its molecular mass is found to be 90.087 g/mol. Determine the molecular formula of the compound, showing your solution.
Answer: This is actually quite simple, first we have to calculate the molar mass of empirical unit. Therefore we have 12+2*1+16 = 30. Then we solve 90/30 = 3. Finally we end up with 3*(CH2O) --> C3H6O3.
I hope it helps, Regards.
Answer:
3 half-lives
Explanation:
The half-life is the time that it takes to a radioactive element to decay to half of its initial amount.
Let's suppose we start with 64 g of the radioactive element.
- After 1 half-life, the mass of the element will be 32 g.
- After 2 half-lives, the mass of the element will be 16 g.
- After 3 half-lives, the mass of the element will be 8 g.
Answer:

Explanation:
2Al(s) + Fe₂O₃(s) ⟶ Al₂O₃(s) + 2Fe(s); ΔᵣH = ?
The formula for calculating the enthalpy change of a reaction by using the enthalpies of formation of reactants and products is

2Al(s) + Fe₂O₃(s) ⟶ Al₂O₃(s) + 2Fe(s)
ΔfH°/kJ·mol⁻¹: 0 -824.3 -1675.7 0
![\begin{array}{rcl}\Delta_{\text{r}}H^{\circ} & = & [1(-1675.7) + 2(0)] - [2(0) - 1(-824.3)]\\& = & -1675.7 + 824.3\\& = & \textbf{-851.4 kJ/mol}\\\end{array}\\\text{The enthalpy change is } \large \boxed{\textbf{-851.4 kJ/mol}}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%5CDelta_%7B%5Ctext%7Br%7D%7DH%5E%7B%5Ccirc%7D%20%26%20%3D%20%26%20%5B1%28-1675.7%29%20%2B%202%280%29%5D%20-%20%5B2%280%29%20-%201%28-824.3%29%5D%5C%5C%26%20%3D%20%26%20-1675.7%20%2B%20824.3%5C%5C%26%20%3D%20%26%20%5Ctextbf%7B-851.4%20kJ%2Fmol%7D%5C%5C%5Cend%7Barray%7D%5C%5C%5Ctext%7BThe%20enthalpy%20change%20is%20%7D%20%5Clarge%20%5Cboxed%7B%5Ctextbf%7B-851.4%20kJ%2Fmol%7D%7D)