Answer : The molal freezing point depression constant of X is 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of X liquid (solvent) = 450.0 g
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X= 
i = Van't Hoff factor = 1 (for non-electrolyte)
= molal freezing point depression constant of X = ?
m = molality
Now put all the given values in this formula, we get
![[0.4-(-0.5)]^oC=1\times k_f\times \frac{5.90g\times 1000}{60g/mol\times 450.0g}](https://tex.z-dn.net/?f=%5B0.4-%28-0.5%29%5D%5EoC%3D1%5Ctimes%20k_f%5Ctimes%20%5Cfrac%7B5.90g%5Ctimes%201000%7D%7B60g%2Fmol%5Ctimes%20450.0g%7D)

Therefore, the molal freezing point depression constant of X is 
SrSo4 = Sr(2+) + SO4(2-)
Let’s say that the initial concentration of SrSo4 was 1. ( or we have 1 mole of this reagent).
When The reaction occurs part of SrSo4is dissociated. And we get X mole Sr(2+) and So4(2-).
Ksp=[Sr(2+)]*[SO4(2-)]
X^2=3.2*10^-7
X=5.6*10^-4
Answer:
The exhaust system of the car is the excretory system that removes waste.
The gas in the car is the digestive system that provides the necessary energy.
Answer:
Hey mate....
Explanation:
This is ur answer.....
<h2>
Solar radiation can be converted either into thermal energy (heat) or into electrical energy.</h2>
Hope it helps!
mark me brainliest plz......
Follow me! :)
The answer is 0.59 M.
Molar mass (Mr) of MgCl₂ is the sum of the molar masses of its elements.
So, from the periodic table:
Mr(Mg) = 24.3 g/l
Mr(Cl) = 35.45 g/l
Mr(MgCl₂) = Mr(Mg) + 2Mr(Cl) = 24.3 + 2 · 35.45 = 24.3 + 70.9 = 95.2 g/l
So, 1 mol has 95.2 g/l.
Our solution contains 55.8g in 1 l of solution, which is 55.8 g/l
Now, we need to make a proportion:
1 mole has 95.2 g/l, how much moles will have 55.8 g/l:
1 M : 95.2 g/l = x : 55.8 g/l
x = 1 M · 55.8 g/l ÷ 95.2 g/l ≈ 0.59 M