The concentration of the drug stock solution is 1.5*10^-9 M i.e. 1.5 * 10^-9 moles of the drug per Liter of the solution
Therefore, the number of moles present in 1 ml i.e. 1*10^-3 L of the solution would be = 1 *10^-3 L * 1.5 * 10^-9 moles/1 L = 1.5 * 10^-12 moles
1 mole of the drug will contain 6.023*10^23 drug molecules
Therefore, 1.5*10^-12 moles of the drug will correspond to :
1.5 * 10^-12 moles * 6.023*10^23 molecules/1 mole = 9.035 * 10^11 molecules
The number of cancer cells = 2.0 * 10^5
Hence the ratio = drug molecules/cancer cells
= 9.035 *10^11/2.0 *10^5
= 4.5 * 10^6
Answer:
–187.9 J/K
Explanation:
The equation that relates the three quantities is:

where
is the Gibbs free energy
is the change in enthalpy of the reaction
T is the absolute temperature
is the change in entropy
In this reaction we have:
ΔS = –187.9 J/K
ΔH = –198.4 kJ = -198,400 J
T = 297.0 K
So the Gibbs free energy is

However, here we are asked to say what is the entropy of the reaction, which is therefore
ΔS = –187.9 J/K
Answer:When you look at the periodic table, each row is called a period (Get it? Like PERIODic table.). All of the elements in a period have the same number of atomic orbitals. For example, every element in the top row (the first period) has one orbital for its electrons.
Explanation:
Ba²⁺ + 2Cl⁻ + 2H⁺ + SO₄²⁻ = BaSO₄ (precipitate) + 2H⁺ + 2Cl⁻
Ba²⁺ + SO₄²⁻ = BaSO₄
A) releasing CO2 that dissolves and forms acid in the oceans (i think i'm sorry if its wrong)