Time taken by the bowling ball to reach its highest point= 0.214 s
initial velocity= Vi=2.1 m/s
Final velocity= Vf=0 as the velocity at the highest point is zero.
acceleration= g= -9.8 m/s²
using the kinematic equation Vf= Vi + at
0= 2.1 + (-9.8)t
t= -2.1/-9.8
t=0.214 s
Thus the time taken by the bowling ball to reach its highest point is 0.214 s
Answer:
see explanations below
Explanation:
At the point when the car leaves the track, the reaction on the road is zero, meaning that the centrifugal force equals the gravitation force, namely
mv^2/r = mg
Solve for v in SI units
v^2 = gr = 9.81 m/s^2 * 14.2 m = 139.302 m^2/s^2
v = sqrt(139.302) = 11.8 m/s
Answer: at 11.8 m/s (26.4 mph) car will leave the track.
The most important information in the MSDS that is useful at the end of an experiment is how to manage or dispose of the waste materials of the experiment. This is important especially if the materials used are toxic. They cannot just be disposed in the sink or the trash bin. They must be disposed in a waste bottle or other methods.
The question is incomplete. Here is the complete question.
A floating ice block is pushed through a displacement vector d = (15m)i - (12m)j along a straight embankment by rushing water, which exerts a force vector F = (210N)i - (150N)j on the block. How much work does the force do on the block during displacement?
Answer: W = 4950J
Explanation: <u>Work</u> (W), in physics, is done when a force acts on an object that has a displacement form a place to another:
W = F · d
As the formula shows, Work is a scalar product, i.e, it results in a number, so, Work only has magnitude.
Force and displacement for the ice block are in 2 dimensions, then work will be:
W = (210)i - (150)j · (15)i - (12)j
W = (210*15) + (150*12)
W = 3150 + 1800
W = 4950J
During the displacement, the ice block has a work of 4950J
Answer:
The Kidneys
Explanation:
The Kidneys remove the toxic stuff that you dont need anymore. Therefore the kidneys rather than the everything else removes blood and toxic waste.