1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garik1379 [7]
4 years ago
10

Write the nuclear equation for the release of the beta particles by Pb-210.

Physics
1 answer:
Liula [17]4 years ago
3 0
210 Pb ---> -ie + 210 B:
84                       8.3
You might be interested in
A car veers off course and runs straight into a brick wall. This is an example
ValentinkaMS [17]
Short time large force
4 0
3 years ago
sound is a longitudinal wave, and its speed depends on the medium through which it propagates. in air, sound travels at 343 m/s
melomori [17]

The speed of the sound wave in the medium, given the data is 3900 m

<h3>Velocity of a wave </h3>

The velocity of a wave is related to its frequency and wavelength according to the following equation:

Velocity (v) = wavelength (λ) × frequency (f)

v = λf

With the above formula, we can obtain the speed of the sound wave. Details below:

<h3>How to determine speed of the sound wave</h3>

The speed of the wave can be obtained as illustrated below:

  • Frequency (f) = 600 Hz
  • Wavelength (λ) = 6.5 m
  • Velocity (v) =?

v = λf

v = 6.5 × 600

v = 3900 m

Thus, the speed of the sound wave in the medium is 3900 m

Learn more about wave:

brainly.com/question/14630790

#SPJ4

8 0
1 year ago
You are holding a positive charge and there are positive charges of equal magnitude 1 mm to your north and 1 mm to your east. Wh
lara [203]

If I hold a positive charge in my hand and there are positive charges of equal magnitude 1 mm to your north and 1 mm to your east then the direction of the force on the charge I am holding is towards the north-east direction.

Reasoning:

It is given that there is a positive charge in my hand. There are two more positive charges with the same magnitude. One is 1 mm far towards the east, and the other one is 1 mm far towards the north. It is required to find the direction of the force acting on the charge in my hand.

Let the magnitude of the charge in my hand is Q, and the magnitude of the other charges is q.

Thus the electric force applied on the charge in my hand due to each other is,

F=\frac{kQq}{r^2}

Here k is the Coulomb constant, and r is the distance between the charges.

It is also known that the force on a positive charge due to another positive charge is acted outwards.

Thus, the force on the charge due to the charge on the east is,

\vec{F_1}=\frac{kQq}{( 10^{-3}\text{ m})^2}\hat{i}

And the force on the charge due to the charge on the north is,

\vec{F_2}=\frac{kQq}{( 10^{-3}\text{ m})^2}\hat{j}

As the forces are equal in magnitude and one is perpendicular to the other, thus the net force will be acted at an angle of 45^\circ from the north or from the north direction.

Thus the net force is acting in the north-east direction.

Learn more about the direction of the force here,

brainly.com/question/2037071

#SPJ4

3 0
2 years ago
An electron emitted in the beta decay of bismuth-210 has a mean kinetic energy of 390 keV. (a) Find the de Broglie wavelength of
Sauron [17]

Explanation:

Given that,

The mean kinetic energy of the emitted electron, E=390\ keV=390\times 10^3\ eV

(a) The relation between the kinetic energy and the De Broglie wavelength is given by :

\lambda=\dfrac{h}{\sqrt{2meE}}

\lambda=\dfrac{6.63\times 10^{-34}}{\sqrt{2\times 9.1\times 10^{-31}\times 1.6\times 10^{-19}\times 390\times 10^3}}

\lambda=1.96\times 10^{-12}\ m

(b) According to Bragg's law,

n\lambda=2d\ sin\theta

n = 1

For nickel, d=0.092\times 10^{-9}\ m

\theta=sin^{-1}(\dfrac{\lambda}{2d})

\theta=sin^{-1}(\dfrac{1.96\times 10^{-12}}{2\times 0.092\times 10^{-9}})

\theta=0.010^{\circ}

As the angle made is very small, so such an electron is not useful in a Davisson-Germer type scattering experiment.

4 0
3 years ago
When the acceleration of a mass on a spring is zero, the velocity is at a
Sergeu [11.5K]

1) Maximum

2) Maximum

Explanation:

The force acting on a mass on a spring is given by Hooke's law; in magnitude:

F=kx

where

F is the force

k is the spring constant

x is the displacement

Also we know from Newton's second law that we can write

F=ma

where

m is the mass

a is the acceleration

So we can write the equation as

ma=kx (1)

From this relationship, we see that the acceleration is directly proportional to the displacement.

On the other hand, we know that the total mechanical energy of the system mass-spring is constant, and it is given by

E=\frac{1}{2}kx^2+\frac{1}{2}mv^2=const. (2)

where the first term is the elastic potential energy while the second term is the kinetic energy, and where

v is the velocity of the mass

From eq. (2), it is clear that when displacement increases, velocity decreases, and vice-versa; however, from eq.(1) we also know that acceleration is proportional to the displacement.

Therefore this means that:

- When acceleration increases, velocity decreases

- When acceleration decreases, velocity increases

Therefore, the two answers here are:

- When the acceleration of a mass on a spring is zero, the velocity is at a  maximum

When the velocity of a mass on a spring is zero, the acceleration is at a  maximum

6 0
3 years ago
Other questions:
  • Monochromatic light of a given wavelength is incident on a metal surface. However, no photoelectrons are emitted. If electrons a
    12·1 answer
  • 6) K2O Use IUPAC nomenclature rules to properly identify this compound. A) potassium oxide B) dipotassium oxide C) potassium (I)
    10·1 answer
  • What do two troughs make when they meet
    12·1 answer
  • A car travels 30 km north in 25 min. And 40 km east in 35 min. What is the total distance traveled
    12·1 answer
  • Which statement is true about the element shown here? A) This element tends to gain electrons to become stable. B) This element
    14·2 answers
  • A car is moving at a velocity of 25 km/h and increases velocity to 1200 km/h in 2 min. what is the acceleration?
    12·1 answer
  • the force of friction between a 1000 kg car and the road is 10000 N, what is the fastest acceleration the car can achieve?​
    5·2 answers
  • What are four things that are cycled in the environment?
    7·2 answers
  • What two measurements are necessary for calculating velocity?
    5·1 answer
  • A 1.50 x 109 kg railroad car moving at 7.00 m/s to the north collides with
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!