We can calculate the acceleration of Cole due to friction using Newton's second law of motion:

where

is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find

Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:

where

is the final speed of the sled

is the initial speed

is the distance covered
By rearranging the equation, we find d:
Chemical energy comes from the food that we eat
Answer:
26 m/s
69 m
Explanation:
Given:
v₀ = 20 m/s
a = 2 m/s²
t = 3 s
Find: v and Δx
v = at + v₀
v = (2 m/s²) (3 s) + 20 m/s
v = 26 m/s
Δx = v₀ t + ½ at²
Δx = (20 m/s) (3 s) + ½ (2 m/s²) (3 s)²
Δx = 69 m
The acceleration of gravity on Earth is 9.8 m/s² downward.
This means that gravity adds 9.8 m/s downward to the speed
of a freely falling object every second.
So after 25 sec, it's falling (25 x 9.8m/s) = 245 m/s faster than
it was falling at the beginning of the 25 seconds.
If it dropped from rest (no speed), then its velocity
after 25 seconds is 245 m/s downward.
Answer:weak nuclear
Explanation:
There weak nuclear force is responsible for allowing carbon-14 to become stable