1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marta [7]
3 years ago
7

BRAINLIEST FOR THE FIRST TO ANSWER

Physics
1 answer:
Sonja [21]3 years ago
8 0

Answer:

Wrong its B Use a different amount of mass in the cart for five different trials, roll the cart down a ramp with the same slope for each trial, and measure how long it takes the cart to roll one meter each time.

Explanation:

You might be interested in
Help plzzz itz importannnttt
krok68 [10]

Answer:

➢ ➢ ➢ ✔3. How did Nazis treat their enemies?✔3. How did Nazis treat their enemies?

4 0
2 years ago
Read 2 more answers
Will brainlist 20 points
Len [333]

Your answer for this question is the third option.

3 0
2 years ago
Read 2 more answers
The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between
erma4kov [3.2K]

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

4 0
3 years ago
Which of the following would have the most momentum?
Anarel [89]
I think it should be D as momentum is the product of mass and velocity...
4 0
2 years ago
The blades in a blender rotate at a rate of 6100 rpm. When the motor is turned off during operation, the blades slow to rest in
MissTica

Answer:

<em>155.80rad/s</em>

Explanation:

Using the equation of motion to find the angular acceleration:

\omega_f = \omega_i + \alpha t

\omega_f is the final angular velocity in rad/s

\omega_i  is the initial angular velocity in rad/s

\alpha is the angular acceleration

t is the time taken

Given the following

\omega_f = 6100rpm

Time = 4.1secs

Convert the angular velocity to rad/s

1rpm = 0.10472rad/s

6100rpm = x

x = 6100 * 0.10472

x  = 638.792rad/s

\omega_f = 638.792rad/s\\

Get the angular acceleration:

Recall that:

\omega_f = \omega_i + \alpha t

638.792 = 0 + ∝(4.1)

4.1∝ = 638.792

∝ = 638.792/4.1

∝ = 155.80rad/s

<em>Hence the angular acceleration as the blades slow down is 155.80rad/s</em>

5 0
2 years ago
Other questions:
  • A photon with wavelength λ = 0.0830 nm is incident on an electron that is initially at rest. if the photon scatters in the backw
    6·1 answer
  • The unit light-year is a measure of
    9·2 answers
  • According to Auto Week magazine, a Chevrolet Blazer traveling at 60 mph (97 km/h) can stop in 8 m on a level road. Determine the
    7·1 answer
  • What linear speed must an earth satellite have to be in a circular orbit at an altitude of 159 km?
    6·1 answer
  • ListenA person on a ledge throws a ball vertically downward, striking the ground below the ledge with 200 joules of kinetic ener
    11·1 answer
  • An object with a mass of 1.5kg changes its velocity from +15m/s to +22 during a time interval of 3.5 seconds. What Impulse was d
    13·1 answer
  • What kind of electric cell is considered to be rechargeable?
    7·2 answers
  • Juan, a biologist, notices that a particular group of hummingbirds leaves during the colder winter months and returns during the
    13·1 answer
  • A student carries a backpack for one mile , another student carries the same back pack for two miles . Compared to the first stu
    8·2 answers
  • Neurons are most associated with<br> A. senses<br> B. eyesight<br> C. chevrolet
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!