<u>Answer:</u>
Adaption to stress occurs in three stages: alarm, fight or flight, exhaustion.
<u>Explanation:</u>
According to the general adaptation syndrome theory proposed by Hans Selye, the adaption to stress occurs in three stages which are:
1. alarm
2. fight or flight
3. exhaustion
This is a process which comprises of three stages that describes the physiological changes which a body undergoes when in stress (an emotional, mental and physical human response to a specific stimulus).
Answer:
I am not sure about the answer as I don't have a proper calculator besides me now
Explanation:
but I used this equation:
(8.20)sin30(1-d)=10d
Idk whether it is correct or not, I'm just a student too
what is your method of doing this question?
Answer:
The latent heat of vaporization of water is 2.4 kJ/g
Explanation:
The given readings are;
The first (mass) balance reading (of the water) in grams, m₁ = 581 g
The second (mass) balance reading (of the water) in grams, m₂ = 526 g
The first joulemeter reading in kilojoules (kJ), Q₁ = 195 kJ
The second joulemeter reading in kilojoules (kJ), Q₂ = 327 kJ
The latent heat of vaporization = The heat required to evaporate a given mass water at constant temperature
Based on the measurements, we have;
The latent heat of vaporization = ΔQ/Δm
∴ The latent heat of vaporization of water = (327 kJ - 195 kJ)/(581 g - 526 g) = 2.4 kJ/g
The latent heat of vaporization of water = 2.4 kJ/g
Answer:
Current, I = 3.57A
Explanation:
A current of I amperes means that I Coulombs of charge flows through the conductor (heating coil) per second.
Therefore, in time t, the total charge (Q) passing through any point in which the current (C) flows will be given by the equation;
Q = It
Where; Q is the charge in coulombs; I is the current in amperes; t is the time in seconds.
From the question, we were given the following parameters;
Q = 25C, t= 7secs and I =?
From the equation, Q = It
We make current, I the subject of formula;
Thus, I = Q/t
Substituting into the equation;
I = 25/7
I = 3.57Amp.