Answer:
19.8 m/s
Explanation:
Given:
Maximum vertical displacement of the object (H) = 20 m
Acceleration due to gravity (g) = 9.8 m/s²
At maximum height, the velocity of the object is 0 m/s for a moment. So, final velocity (v) at the maximum height is 0 m/s.
Now, let the initial velocity or velocity at launch be 'u' m/s.
Now, using the following equation of motion for vertical motion:

Rewriting in terms of 'u', we get:

Plug in the given values and solve for 'u'. This gives,

Therefore, the vertical velocity at the launch is 19.8 m/s.
Answer:
Part a)
v = 16.52 m/s
Part b)
v = 7.47 m/s
Explanation:
Part a)
(a) when the large-mass object is the one moving initially
So here we can use momentum conservation as the net force on the system of two masses will be zero
so here we can say

since this is a perfect inelastic collision so after collision both balls will move together with same speed
so here we can say



Part b)
(b) when the small-mass object is the one moving initially
here also we can use momentum conservation as the net force on the system of two masses will be zero
so here we can say

Again this is a perfect inelastic collision so after collision both balls will move together with same speed
so here we can say



Answer:
Avogadro's law.
Explanation:
Avogadro’s law states that, equal volumes of all gases at the same temperature and pressure contain the same number of molecules.
Mathematically,
V n
V = Kn where V = volume in cm3, dm3, ml or L; n = number of moles of gas;
K = mathematical constant.
The ideal gas equation is a combination of Boyle's law, Charles' law and Avogadro’s law.
V 1/P at constant temperature (Boyle’s law)
V T at constant pressure ( Charles’law)
V n at constant temperature and pressure ( Avogadro’s law )
Combining the equations yields,
V nT/P
Introducing a constant,
V = nRT/P
PV = nRT
Where P = pressure in atm, Pa, torr, mmHg or Nm-2; V = volume in cm3, dm3, ml or L; T = temperature in Kelvin; n = number of moles of gas in mol; R = molar gas constant = 0.082 dm3atmK-1mol-1
Answer:
a) ω = 9.86 rad/s
b) ac = 194. 4 m/s²
c) minimum coefficient of static friction, µs = 19.8
Explanation:
a) angular speed, ω = 2πf, where f is frequency of revolution
1 rps = 6.283 rad/s, π = 3.142
ω = 2 * 3.14 * 0.25 * 6.28
ω = 9.86 rad/s
b) centripetal acceleration, a = rω²
where r is radius in meters; r = 200 cm or 2 m
a = 2 * 9.86²
a = 194. 4 m/s²
c) µs = frictional force/ normal force
frictional force = centripetal force = ma; where a is centripetal acceleration
normal force = mg; where g = 9.8 m/s²
µs = ma/mg = a/g
µs = 194.4 ms⁻²/9.8 ms⁻²
c) minimum coefficient of static friction, µs = 19.8
Answer:
nba young bruuhh
Explanation:
have a great day and plz mark brainliest!