Answer:
F = 2π I R B
Explanation:
The magnetic force is described by the equation.
F = q v x B = i L x B
Where i is the current, L is a vector that points in the direction of the current (length) and B is the magnetic field.
This equation can be used in scalar form and the direction of the force found by the right hand ruler, the thumb goes in the direction of L, the fingers extended in the direction of B and the palm of the hand indicates the direction of the force if the load is positive
F = i L B sin θ
In this case the wire is in the xy plane and the z-axis field whereby they are perpendicular, θ = 90º and sin 90 = 1
F = i L B
The loop length is
L = 2π R
F = i 2π R B
F = 2π I R B
The force is in the loop
The answer is true as gravity is powerful than any other force
Answer:
gravitational potential energy.
Explanation:
Gravitational potential energy (GPE) can be defined as an energy possessed by an object or body due to its position above the earth surface.
Mathematically, gravitational potential energy is given by the formula;
Where,
G.P.E represents gravitational potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
This ultimately implies that, anytime there is height, the object must have gravitational potential energy.
Hence, an object possesses gravitational potential energy due to its height (position) and the earth's gravitational force.
Answer:
b) 68,9 km/h a) picture
Explanation:
In this problem, since velocity is expressed in km/h and time in minutes, we have to convert either time to hours or velocity to km/min. It is easier to use hours.
Using this formula we pass time to hours:
Now we can plot speed vs time (image 1). The problem says that the driver uses constant speed, so all lines have to be horizontal.
Using the values of the speed we calculate the distance in each interval
Using these values and the fact that she was having lunch in the third one (therefore stayed in the same position), we plot position vs time, using initial position zero (image 2, distance is in km, not meters).
Finally, we compute the average speed with the distance over time:
Answer:
40 cm
Explanation:
We are given that
Load=800 N
Effort=200 N
Load distance=10 cm
We have to find the effort distance.
We know that
Using the formula
Effort distance=
Effort distance=
Effort distance=40 cm
Hence, the effort distance will be 40 cm.