Answer:
OCO
Another way of writing CO₂
Explanation:
A reaction equation has <u>reactants on the left</u> and <u>products on the right</u>.
The reactants are carbon and oxygen. The product is carbon dioxide.
C + O₂ → CO₂
You might see the equation both ways.
C + O₂ → OCO
C + O₂ in the products would mean no reaction has occurred. The problem can <u>solid carbon can burn in oxygen</u>, so a reaction will occur. For no reaction, you would put "NR" in the products.
<u>OCO is the structural way of writing CO₂.</u> Both have one carbon atom (C) and two oxygen atoms (O).
C + 2O is not possible. Oxygen, if alone, has to be at least O₂ because it's a <u>diatomic molecule</u>.
Answer:
The movement of substances may occur across a semi‐permeable membrane (such as the plasma membrane). A semi‐permeable membrane allows some substances to pass through, but not others.
Explanation:
One of the many awe-inspiring things about algae, Professor Greene explains, is that they can grow between ten and 100 times faster than land plants. In view of this speedy growth rate – combined with the fact they can thrive virtually anywhere in the right conditions – growing marine microalgae could provide a variety of solutions to some of the world’s most pressing problems.
Take, global warming. Algae sequesters CO2, as we have learned, but owing to the fact they grow faster than land plants, can cover wider areas and can be utilised in bioreactors, they can actually absorb CO2 more effectively than land plants. AI company Hypergiant Industries, for instance, say their algae bioreactor was 400 times more efficient at taking in CO2 than trees.
And it’s not just their nutritional credentials which could solve humanity’s looming food crisis, but how they are produced. Marine microalgae grow in seawater, which means they do not rely on arable land or freshwater, both of which are in limited supply. Professor Greene believes the use of these organisms could therefore release almost three million km2 of cropland for reforestation, and also conserve one fifth of global freshwater
Answer:
<h2>2 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>2 g/mL</h3>
Hope this helps you