Answer :
The complete net ionic equation is :

Explanation :
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and present in an aqueous are represented in the form of ions.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The balanced molecular equation will be,

The complete ionic equation in separated aqueous solution will be,

In this equation the species,
are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The complete net ionic equation is:

The forces are called "strong nuclear".
Answer:
The value is 
Explanation:
From the question we are told that
The concentration of
is 
The solubility product constant for
is 
The stability constant for
is 
Generally the dissociation reaction for NiS is
Generally the formation reaction for
is

Combining both reaction we have

Gnerally the equilibrium constant for this reaction is

=>
=> 
Generally the I C E table for the above reaction is

initial [ I] 0.091 0 0
Change [C] -4x +x + x
Equilibrium [E ] 0.091 - 4x x x
Here is x is the amount in term of concentration that is lost by
and gained by
and 
Gnerally the equilibrium constant for this reaction is mathematically represented as
![K_c = \frac{[Ni (CN)_4^{2-} ] [S^{2-} ] }{ [CN^{-}]^4}](https://tex.z-dn.net/?f=K_c%20%20%3D%20%20%5Cfrac%7B%5BNi%20%28CN%29_4%5E%7B2-%7D%20%5D%20%5BS%5E%7B2-%7D%20%5D%20%7D%7B%20%5BCN%5E%7B-%7D%5D%5E4%7D)
=> ![3.0*10^{12} = \frac{x * x}{ [0.091 - 4x ]^4}](https://tex.z-dn.net/?f=3.0%2A10%5E%7B12%7D%20%3D%20%20%5Cfrac%7Bx%20%2A%20%20x%7D%7B%20%5B0.091%20-%204x%20%5D%5E4%7D)
=> ![3.0*10^{12}* [0.091 - 4x ]^4 = x^2](https://tex.z-dn.net/?f=3.0%2A10%5E%7B12%7D%2A%20%20%5B0.091%20-%204x%20%5D%5E4%20%3D%20x%5E2)
=> ![[0.091 - 4x ]^4 = \frac{x^2}{3.0*10^{12}}](https://tex.z-dn.net/?f=%5B0.091%20-%204x%20%5D%5E4%20%3D%20%20%5Cfrac%7Bx%5E2%7D%7B3.0%2A10%5E%7B12%7D%7D)
=> ![[0.091 - 4x ] = \sqrt[4]{ \frac{x^2}{3.0*10^{12}}}](https://tex.z-dn.net/?f=%5B0.091%20-%204x%20%5D%20%3D%20%5Csqrt%5B4%5D%7B%20%5Cfrac%7Bx%5E2%7D%7B3.0%2A10%5E%7B12%7D%7D%7D)
=> ![[0.091 - 4x ] = \frac{\sqrt{x} }{1316}](https://tex.z-dn.net/?f=%5B0.091%20-%204x%20%5D%20%3D%20%5Cfrac%7B%5Csqrt%7Bx%7D%20%7D%7B1316%7D)
=> 
Square both sides

=> 
=> 
Solving using quadratic equation
The value of x is 
Hence the amount in terms of molarity (concentration) of
and
produced at equilibrium is
it then means that the amount of NiS (nickel(II) sulfide) lost at equilibrium is 
So the molar solubility of nickel(II) sulfide at equilibrium is

Answer:
Attached below
Explanation:
Free energy of mixing = ΔGmix = Gf - Gi
attached below is the required derivation of the
<u>a) Molar Gibbs energy of mixing</u>
ΔGmix = Gf - Gi
hence : ΔGmix = ∩RT ( X1 In X1 + X2 In X2 + X3 In X3 + ------- )
<u>b) molar excess Gibbs energy of mixing</u>
Ni = chemical potential of gas
fi = Fugacity
N°i = Chemical potential of gas when Fugacity = 1
ΔG = RT In ( a2 / a1 )
Answer:
Silver, 0.239 J/(g °C)
Explanation:
- The heat change is related to specific heat as given by the formula;
Heat change = mass of substance × specific heat × change in temperature
- Therefore; considering same amount of substance or equal masses and have the same initial temperature.
- The change in temperature will be inversely proportional to the specific heat.
- Therefore; the higher the specific heat lower the temperature change.
- Hence, the change in temperature will be highest for the substance with the lowest specific heat.
Therefore; the one that will increase in temperature the most is Silver