Answer : The rate of effusion of sulfur dioxide gas is 52 mL/s.
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.

or,
..........(1)
where,
= rate of effusion of nitrogen gas = 
= rate of effusion of sulfur dioxide gas = ?
= molar mass of nitrogen gas = 28 g/mole
= molar mass of sulfur dioxide gas = 64 g/mole
Now put all the given values in the above formula 1, we get:


Therefore, the rate of effusion of sulfur dioxide gas is 52 mL/s.
Not sure if this was a true or false but ok great job it is true. :)
Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.
Answer:-
atoms.
Solution:- We have been given the grams of carbon tetrachloride and asked to calculate the number of atoms of chlorine. It is a three step conversion problem. In the first we convert the grams of carbon tetrachloride to moles of it. In second step we convert moles of carbon tetrachloride to moles of chlorine and in the third step we convert the moles of chlorine to atoms of chlorine.
For grams to mole conversion we need the molar mass of the compound. Molar mass of carbon tetrachloride is 153.82 grams per mol. If we look at the formula of carbon tetrachloride then four chlorine are present in it. It means 1 mol of carbon tetrachloride has four moles of chlorine. The calculations are as follows:

=
atoms
So, there are
atoms in 12.2 grams of
.