If 1 ken is 1.97 meter, then 1 square ken is 3.8809 square meters, and one cubic ken is 7.645373. As for the cylindrical tank, the volume of it would be 10.835 times the radius of the cylinder time 1.97^2 times pi. As you didn't specify the radius, I can't give the exact answer but that would be how to get it.
The emf induced in the second coil is given by:
V = -M(di/dt)
V = emf, M = mutual indutance, di/dt = change of current in the first coil over time
The current in the first coil is given by:
i = i₀
i₀ = 5.0A, a = 2.0×10³s⁻¹
i = 5.0e^(-2.0×10³t)
Calculate di/dt by differentiating i with respect to t.
di/dt = -1.0×10⁴e^(-2.0×10³t)
Calculate a general formula for V. Givens:
M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)
Plug in and solve for V:
V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))
V = 320e^(-2.0×10³t)
We want to find the induced emf right after the current starts to decay. Plug in t = 0s:
V = 320e^(-2.0×10³(0))
V = 320e^0
V = 320 volts
We want to find the induced emf at t = 1.0×10⁻³s:
V = 320e^(-2.0×10³(1.0×10⁻³))
V = 43 volts
current in 3ohm resistor is 0.9
Explanation:
total
Answer:
Thomson's cathode-ray tube experiments led him to develop the plum-pudding model, which stated that each atom had positively charged particles spread throughout its negatively charged matter. Reword the statement so it is true. ... More alpha particles were deflected than he expected.
Explanation:
Well.. I hope it helps you..
Just correct me if I'm wrong..