The shape is connected in parallel so;
5.1) Ans;

5.2) Ans;

I hope I helped you^_^
Answer:
a.14 s
b.70 s
Explanation:
a.Let the sidewalk moving in positive x- direction.
Speed of sidewalk relative to ground=
Speed of women relative to sidewalk=v=1.5m/s
The speed of women relative to the ground

Distance=35 m
Time=
Using the formula
Time taken by women to reach the opposite end if she walks in the same direction the sidewalk is moving=
b.If she gets on at the end opposite the end in part (a)
Then, we take displacement negative.
Speed of sidewalk relative to ground=
Speed of women relative to sidewalk=v=-1.5 m/s
The speed of women relative to the ground=
Time=
Hence, the women takes 70 s to reach the opposite end if she walks in the opposite direction the sidewalk is moving.
Answer:
a) 3.43 m/s
Explanation:
Due to the law of conservation of momentum, the total momentum of the bullet - rifle system must be conserved.
The total momentum before the bullet is shot is zero, because they are both at rest, so:

Instead the total momentum of the system after the shot is:

where:
m = 0.006 kg is the mass of the bullet
M = 1.4 kg is the mass of the rifle
v = 800 m/s is the velocity of the bullet
V is the recoil velocity of the rifle
The total momentum is conserved, therefore we can write:

Which means:

Solving for V, we can find the recoil velocity of the rifle:

where the negative sign indicates that the velocity is opposite to direction of the bullet: so the recoil speed is
a) 3.43 m/s
Answer:
6 month interval
Explanation:
The distance to a nearby star in theory is more simple than
one might think! First we must learn about the parallax effect. This is the mechanism our eyes use to perceive things at a distance! When we look at the star from the earth we see it at different angles throughout the earth's movement around the sun similar to how we see when we cover on eye at a time. Modern telescopes and technology can help calculate the angle of the star to the earth with just two measurements (attached photo!) Since we know the distance of the earth from the sun we can use a simple trigonometric function to calculate the distance to the star. The two measurements needed to calculate the angle of the star to the earth caused by parallax (in short angle θ) are shown in the second attached photo.
So using a simple trigonometric function
we can solve for d which is the distance of the earth to the star:

In the first attached photo a picture where r is the distance to the star and the base of the triangle is the diameter of the earth.