Answer
4.8 N
If the box is moving with a constant velocity, then we can say that the system is in equilibrium. This is because if the external force (F->) was greater than other forces the box would be accelerating. This tells us that this force (F->) is just enough to overcome friction and so it must be equal to 4.8 N.
The normal force has no effect to the horizontal velocities or forces. It is equal to -Weight. That is -74 N. The negative sign shows that the force is in opposite direction.
Answer:
Tides on our planet are caused by the gravitational pull of the Moon and Sun. Earth's oceans "bulge out" because the Moon's gravity pulls a little harder on one side of our planet (the side closer to the Moon) than it does on the other. The Sun's gravity raises tides, too, but lunar tides are twice as big.
Answer:
Turn the heater on
Explanation:
There are two main forces involved in a balloon flight
The downward force is the total weight of the balloon: the air it contains, the gas bag, the basket, the passengers, etc.
The upward force is the weight of the of the air the balloon displaces.
During level flight
,
buoyant force = weight of displaced air - total weight of balloon
If you increase the temperature of the air in the bag, the air molecules spread out and leave through the bottom of the bag.
The balloon still has the same volume, so the weight of displaced outside air stays the same.
However, the balloon has lost some hot inside air, so its total weight decreases.
The upward force is greater than the downward force, so the balloon rises.
Answer:
B : is independent of the natural frequency of the oscillator
Explanation:
You can apply any force you like to a natural oscillator. It is independent of the natural frequency of the oscillator.
The result you get will depend on how the frequency of the applied force and the natural frequency relate to each other. It will also depend on the robustness of the oscillator with respect to the applied force.
Clearly, if the force is small enough, it will have no effect on the oscillator. If it is large enough, it will overpower any motion the oscillator may attempt. For forces in the intermediate range, there will be some mix of natural oscillation and forced behavior. One may modulate the other, for example.