Answer:
m 200 g , T 0.250 s,E 2.00 J
;
2 2 25.1 rad s
T 0.250
(a)
2 2
k m 0.200 kg 25.1 rad s 126 N m
(b)
2
2 2 2.00 0.178 mm 200 g , T 0.250 s,E 2.00 J
;
2 2 25.1 rad s
T 0.250
(a)
2 2
k m 0.200 kg 25.1 rad s 126 N m
(b)
2
2 2 2.00 0.178 m
Explanation:
That is a reason
Formula for potential energy is V=mgh, where m is mass in KG, g is earth acceleration (10 m/s^2), and h its height in meters. We know mass, acceleration is constant and also known, we know height also. Lets substitute
V=75*10*300=225000[J]=225[kJ] - its the answer
Answer:
The force exerted on an electron is 
Explanation:
Given that,
Charge = 3 μC
Radius a=1 m
Distance = 5 m
We need to calculate the electric field at any point on the axis of a charged ring
Using formula of electric field


Put the value into the formula


Using formula of electric field again

Put the value into the formula


We need to calculate the resultant electric field
Using formula of electric field

Put the value into the formula


We need to calculate the force exerted on an electron
Using formula of electric field


Put the value into the formula


Hence, The force exerted on an electron is 
Answer:
If there is a net force acting on an object, the object will have an acceleration and the object's velocity will change. ... Newton's second law states that for a particular force, the acceleration of an object is proportional to the net force and inversely proportional to the mass of the object.
Explanation:
Answer:

Explanation:
= Velocity of one lump = 
= Velocity of the other lump = 
m = Mass of each lump = 
The collision is perfectly inelastic as the lumps stick to each other so we have the relation

The velocity of the stuck-together lump just after the collision is
.