Answer: 43.58 min
Explanation:
Knowing the volume of a rectangular object is length x width x height, we have two volumes:


And we know it takes a time of 4 minutes to fill
.
If we want to know how long will it take the same hose to fill another tank with volume
, we can use the <u>Rule of three</u>, which is a mathematical rule to find out an amount that is with another quantity given in the same relation as other two also known:
---- 
---- 

Finally:

That would be 110/22, which is 5 hours
Answer:
A massive object (like a galaxy cluster) bends the light from an object (like a quasar) that lies behind it.
Explanation:
A massive object, like a galaxy cluster, is able to deform the space-time shape as a consequence of its own gravity, so the light that it is coming from a source that is behind it in the line of sight will be bend or distorts in a way that will be magnified, making small arcs around the cluster with the image of the background object.
This technique is useful for astronomers since they make research of faraway objects (at hight redshift) that otherwise will difficult to detect with a telescope.
Answer:
a = 0.16 [m/s²]
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 3.2 [m/s]
Vo = initial velocity = 1.1 [m/s]
t = time = 13 [s]
a = acceleration [m/s²]
Now replacing:
![3.2=1.1+a*13\\2.1=13*a\\a=0.16[m/s^{2} ]](https://tex.z-dn.net/?f=3.2%3D1.1%2Ba%2A13%5C%5C2.1%3D13%2Aa%5C%5Ca%3D0.16%5Bm%2Fs%5E%7B2%7D%20%5D)
Answer:
Explanation:
The mass of that science book...wow. In pounds that would be 35.2! Yikes!
Anyway, we need final velocity here, and the mass of the book has nothing to do with how fast it falls. Everything is pulled by the same gravity. A feather falls at 9.8 m/s/s and so does an elephant. Mass is useless information. The equation we will use is
Δx where
v is the final velocity, our unknown,
v₀ is the initial velocity which is 0 since someone had to be holding the book before dropping it,
a is the pull of gravity which is always -9.8 m/s/s, and
Δx = -120 which is the displacement (it's negative because the book falls below the point from which it was dropped). Filling in:
so
and
v = 48 m/s
As far as how far above the bottom of the cliff the object is when it is moving at 12 m/s we will use the same equation, but the velocity will be 12:
Δx and
144 = -19.6Δx so
Δx = -7.3 m. That's how far from the top of the cliff it is. We subtract then t find out how far it is from the bottom:
120 - 7.3 = 112.7 m off the ground.