Answer:
The total pressure in the new container is 5.608 atm
Explanation:
Step 1: we determine number of moles of N₂ gas present
PV = nRT
Given;
Pressure of N₂ gas = 4.75 atm
Volume of N₂ gas = 1 L
Temperature N₂ gas = 26 ⁰C
R is constant = 0.0821 atm.L/K.mol
n is the number of moles of N₂ gas = ?
![n = \frac{PV}{RT} = \frac{4.75*1}{0.0821*(26+273)} = 0.1935 \ moles \ of \ N_2](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7BPV%7D%7BRT%7D%20%20%3D%20%5Cfrac%7B4.75%2A1%7D%7B0.0821%2A%2826%2B273%29%7D%20%3D%200.1935%20%5C%20moles%20%5C%20of%20%5C%20N_2)
Step 2: we determine number of moles of O₂ gas present
Given;
Pressure of Given;
Pressure of O₂ gas = 5.25 atm
Volume of O₂ gas = 5 L
Temperature N₂ gas = 20⁰C
n is the number of moles of O₂ gas = ?
![n = \frac{PV}{RT} = \frac{5.25*5}{0.0821*(20+273)} = 1.0912 \ moles \ of \ O_2](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7BPV%7D%7BRT%7D%20%20%3D%20%5Cfrac%7B5.25%2A5%7D%7B0.0821%2A%2820%2B273%29%7D%20%3D%201.0912%20%5C%20moles%20%5C%20of%20%5C%20O_2)
Step 3: we determine the total pressure of gases in the new container.
Total number of moles of gases = 0.1935 + 1.0912 = 1.2847
Total volume of gases = 1 + 5 = 6L
Total temperature = 26 + 20 = 46 ⁰C
![P_{Total} = \frac{nRT}{V} = \frac{1.2847*0.0821*(46+273)}{6} = 5.608 \ atm](https://tex.z-dn.net/?f=P_%7BTotal%7D%20%3D%20%5Cfrac%7BnRT%7D%7BV%7D%20%3D%20%5Cfrac%7B1.2847%2A0.0821%2A%2846%2B273%29%7D%7B6%7D%20%3D%205.608%20%5C%20atm)
Therefore, the total pressure in the new container is 5.608 atm