Answer and Explanation:
Stars create energy primarily through the fusion of hydrogen into helium through nuclear reactions.
<span>You are given a QL = -26 μC charge that is placed on the x-axis at x = - 0.2 m and a QR = 26 μC charge that is placed at x = +0.2 m. The answers are:
The x-component of the electric field at x = 0 m and y = 0.2 m is 3.
The y-component of the electric field at x = 0 m and y = 0.2 m is 2.
</span>
The concept required to solve this problem is linked to inductance. This can be defined as the product between the permeability in free space by the number of turns squared by the area over the length. Recall that Inductance is defined as the opposition of a conductive element to changes in the current flowing through it. Mathematically it can be described as

Here,
= Permeability at free space
N = Number of loops
A = Cross-sectional Area
l = Length
Replacing with our values we have,



Therefore the Inductance is 
Il existe troi types de rayons produits lors de la désintégration des éléments radioactifs:
-- "particules alpha" . . . noyaux d'hélium, composés chacun de 2 protons et 2 neutrons
-- "rayons bêta" ou "particules bêta" . . . flux d'électrons
-- "rayons gamma" . . . rayonnement électromagnétique avec les longueurs d'onde les plus courtes connues et l'énergie la plus élevée
Answer:
Initial velocity will be 1.356 m/sec
Explanation:
Let the initial speed = u
Angle at which rubber band is launched = 37°
Horizontal component of initial velocity 
Time is given as t = 1.20 sec
Distance in horizontal direction = 1.30 m
We know that distance = speed × time
So time 


So initial velocity will be 1.356 m/sec