Answer:
Capacitance is the ratio of the charge to the potential difference. How is the charge stored on a capacitor related to the capacitance of the capacitor and the potential difference across the capacitor? The charge equals the product of the capacitance and the potential difference.
Explanation:
Hope this helps
Answer:

Explanation:
Electrostatic Forces
The force exerted between two point charges
and
separated a distance d is given by Coulomb's formula

The forces are attractive if the charges have different signs and repulsive if they have equal signs.
The problem described in the question locates three point charges in a straight line. The charges have the values shown below


The distance between
and
is

The distance between
and
is

We must find the value of
such that

Applying Coulomb's formula for
is

Now for 

If the total force on
is zero, both forces must be equal. Note that being q2 negative, the force on q3 is to the right. The force exerted by q1 must go to the left, thus q1 must be positive. Equating the forces we have:


Simplfying and solving for 



After fertilization in the fallopian tube, It will take 6-12 days for the zygote to travel before arriving at the uterus.
<h3>What is a zygote?</h3>
A zygote is, generally speaking, a cell created by the fusion of two gametes; the growing person is created from such a cell.
It takes the zygote around 6–12 days following fertilization in the fallopian tube for the fertilized egg to travel to the uterus and attach to the uterus, a process known as implantation.
Hence It will take 6-12 days for the zygote to travel before arriving at the uterus.
To learn more about the zygote refer;
brainly.com/question/465851
#SPJ1
Answer:
Force, F = 77 N
Explanation:
A child in a wagon seem to fall backward when you give the wagon a sharp pull forward. It is due to Newton's third law of motion. The forward pull on wagon is called action force and the backward force is called reaction force. These two forces are equal in magnitude but they acts in opposite direction.
We need to calculate the force is needed to accelerate a sled. It can be calculated using the formula as :
F = m × a
Where
m = mass = 55 kg
a = acceleration = 1.4 m/s²

F = 77 N
So, the force needed to accelerate a sled is 77 N. Hence, this is the required solution.