Answer:
Option (D)
Explanation:
Weathering is usually defined as the disintegration of rocks at the surface of the earth. This break down of rocks is mainly caused by the geological processes that occur on the earth's surface. This process results in the formation of sediments that are transported and deposited in a new environment.
This weathering process primarily takes place in three different ways such as-
- Physical weathering- Here, the rocks are broken down by the physical agents such as wind, water, ice.
- Chemical weathering- Here the rocks are broken down when interacts with the chemical containing water.
- Biological weathering- here, the rocks are broken down due to the activities done by organisms such as plants and animals.
In the given condition, Quincy can see a real example of rock weathering in the high mountainous region, as in the mountainous region the rocks are frequently weathered and eroded by the agents such as wind, water, and ice.
Thus, the correct answer is option (D).
Both of them have high electronegativity. Hence they both tend to gain electrons to gain stability.
Answer:
a) 2.01 g
Explanation:
- Na₂CO₃ (s) + 2AgNO₃ (aq) → Ag₂CO₃ (s) + 2NaNO₃
First we <u>convert 0.0302 mol AgNO₃ to Na₂CO₃ moles</u>, in order to <em>calculate how many Na₂CO₃ moles reacted</em>:
- 0.0302 mol AgNO₃ *
= 0.0151 mol Na₂CO₃
So the remaining Na₂CO₃ moles are:
- 0.0340 - 0.0151 = 0.0189 moles Na₂CO₃
Finally we <u>convert Na₂CO₃ moles into grams</u>, using its <em>molar mass</em>:
- 0.0189 moles Na₂CO₃ * 106 g/mol = 2.003 g Na₂CO₃
The closest answer is option a).
I will need a picture if the periodic table