<h3>Answer:</h3>
7.57 × 10⁻²² g of F
<h3>Solution:</h3>
Data Given:
Number of Molecules = 8
M.Mass of BF₃ = 67.82 g.mol⁻¹
Mass of Fluorine atoms = ?
Step 1: Calculate Moles of BF₃
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Putting value,
Moles = 8 Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Moles = 1.33 × 10⁻²³ mol
Step 2: Calculate Mass of BF₃:
Moles = Mass ÷ M.Mass
Solving for Mass,
Mass = Moles × M.Mass
Putting values,
Mass = 1.33 × 10⁻²³ mol × 67.82 g.mol⁻¹
Mass = 9.0 × 10⁻²² g
Step 3: Calculate Mass of Fluorine Atoms:
As,
67.82 g BF₃ contains = 57 g of F
So,
9.0 × 10⁻²² g will contain = X g of F
Solving for X,
X = (9.0 × 10⁻²² g × 57 g) ÷ 67.82 g
X = 7.57 × 10⁻²² g of F
Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is 194.19 g/mol.
Answer: B- Chemical bonds are formed. Energy is released in the form of heat.
Explanation: I hoped that helped !
Answer:
4 moles
Explanation:
From the equation 1 mole of C6H1206 produces 6 moles of CO2.
Therefore the answer is 24/6 = 4 moles of C6H1206.
Answer:
The density of acetic acid at 30°C = 1.0354_g/mL
Explanation:
specific gravity of acetic acid = (Density of acetic acid at 30°C) ÷ (Density of water at 30°C)
Therefore, the density of acetic acid at 30°C = (Density of water at 30°C) × (Specific gravity of acetic acid at 30°C)
= 0.9956 g/mL × 1.040
= 1.0354_g/mL
Specific gravity, which is also known as relative density, is the ratio of the density of a substance to the density of a specified standard substance.
Generally the standard substance of to which other solid and liquid substances are compared is water which has a density of 1.0 kg per litre or 62.4 pounds/cubic foot at 4 °C (39.2 °F) while gases are normally compared with dry air, with a density of 1.29 grams/litre or 1.29 ounces/cubic foot under standard conditions of a temperature of 0 °C and one standard atmospheric pressure