When you talk about rate, you will expect that it will be in terms of a time unit. It measures how fast it is going. So, you would expect that the denominator is in time units. For the movement, you can measure this with either distance or velocity.
So, for the first variety, you would need distance and time to measure the rate of how far you go at a certain time. It is also called as velocity. For the second variety, you would need velocity and time to measure the rate of how fast you are going at a certain interval. It is also called as acceleration.
Explanation:
Answer
( 58.3 mL ) (
0.789 g
1 mL
) (
1 mole
46 g
) = 1 mole C2H5OH
( 500 mL H2O ) (
1 g
1 mL
) (
1 mole
18 g
) = 27.8 mole H2O
The total moles = 1 mole C2H5OH + 27.8 mole H2O = 28.8 moles
The mole fraction =
moles C2H5OH
total moles
=
1 mole C2H5OH
28.8 total moles
= 0.035
The mole percent would be 3.5%.
What is the weight fraction?
Answer
( 58.3 mL ) (
0.789 g
1 mL
) = 46 g C2H5OH
( 500 mL H2O ) (
1 g
1 mL
) = 500 g H2O
The total mass = 46 g C2H5OH + 500 g H2O = 546 g
The mass fraction =
mass C2H5OH
total mass
=
46 g C2H5OH
546 total grams
= 0.084
The mass percent would be 8.4%.
What is the molarity?
Answer
The molarity =
moles C2H5OH
L of solution
=
1 mole C2H5OH
.5583 L
= 1.79 M
What is the molality?
Answer
The molality =
moles C2H5OH
kg of solvent
=
1 mole C2H5OH
0.5 kg H2O
= 2
Into molecules of
sugar and
oxygen.
The complete reaction of the photosynthesis is in fact:

and the energy of the light coming from the sun is also used to make the reaction possible.
Answer:
Mass of the oil drop, 
Explanation:
Potential difference between the plates, V = 400 V
Separation between plates, d = 1.3 cm = 0.013 m
If the charge carried by the oil drop is that of six electrons, we need to find the mass of the oil drop. It can be calculated by equation electric force and the gravitational force as :


, e is the charge on electron
E is the electric field, 


So, the mass of the oil drop is
. Hence, this is the required solution.
Great equation: distance = rate*time
So, distance run = 4.82 meters/second * 1.98 seconds = 9.5436 meters (round according to whatever the problem specifies, usually to the tenths or hundredths is sufficient).
This makes sense if you think about it since you are multiplying seconds with meters over seconds. The seconds cancel out, leaving you only the meters.