Answer:
You take the light from a star, planet or galaxy and pass it through a spectroscope, which is a bit like a prism letting you split the light into its component colours. "It lets you see the chemicals being absorbed or emitted by the light source. From this you can work out all sorts of things," says Watson
Answer:
40 cm
Explanation:
We are given that
Load=800 N
Effort=200 N
Load distance=10 cm
We have to find the effort distance.
We know that

Using the formula

Effort distance=
Effort distance=
Effort distance=40 cm
Hence, the effort distance will be 40 cm.
The net force is 12 N to the left.
The concept required to solve this problem is associated with potential energy. Recall that potential energy is defined as the product between mass, gravity, and change in height. Mathematically it can be described as

Here,
= Change in height
m = mass of super heroine
g = Acceleration due to gravity
The change in height will be,

The final position of the heroin is below the ground level,

The initial height will be the zero point of our system of reference,


Replacing all this values we have,



Since the final position of the heroine is located below the ground, there will net loss of gravitational potential energy of 10744.81J