1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnyKZ [126]
3 years ago
6

A friend claims that throwing a baseball up towards the school roof illustrates gravitational potential energy transforming into

kinetic energy. What is wrong with your friend's statement?
Physics
1 answer:
Cloud [144]3 years ago
4 0

Answer:

The Statement is wrong because the reverse is the case as it is the  kinetic energy that is being transformed to gravitational potential energy.

Explanation:

As your friend throws  the baseball into the air the ball gains an initial velocity (u) and this makes the Kinetic energy to be equal to

                    KE = \frac{1}{2} mu^2

Here  m is the mass of the baseball

       Now as this ball moves further upward the that velocity it gained reduce due to the gravitational force and this in turn reduces the kinetic energy of the ball and this kinetic energy lost is being converted to gravitational potential energy which is mathematically represented as (m×g×h)

as energy can not be destroyed but converted to a different form according to the first law of thermodynamics

Looking a the formula for gravitational potential energy we see that the higher the ball goes the grater the gravitational potential energy.

You might be interested in
Ask a member of the family to help you.Do the following activities and identify the skill/skills being excited . use a separate
Archy [21]

Answer:

Ok. Thanks.

I'll try it out.

3 0
2 years ago
What law of motion is that representing ?
Naya [18.7K]

Explanation:

answer is the 3rd law of motion

I hope it will be helpful for you

please mark as brainest answer

thank you

6 0
3 years ago
A physics student stands on a cliff overlooking a lake and decides to throw a softball to her friends in the water below. She th
Andre45 [30]

The horizontal distance covered by the ball before hitting the water is 70.4 m

Explanation:

The motion of the ball is the motion of a projectile, so it consists of two independent motions:

  • A uniform motion along the horizontal (x) direction
  • A uniformly accelerated motion along the vertical (y) direction

We start by calculating the time of flight of the ball. This can be done by analyzing the vertical motion. We can use the following suvat equation:

s=u_y t + \frac{1}{2}at^2

where:

s = -16.5 m is the vertical displacement of the ball (it is negative because we take upward as positive direction)

u_y is the initial vertical velocity of the ball, which is given by

u_y = u sin \theta

where

u = 23.5 m/s is the initial velocity

\theta=33.5^{\circ} is the angle of projection

Substituting,

u_y=(23.5)(sin 33.5^{\circ})=13.0 m/s

a=g=-9.8 m/s^2 is the acceleration of gravity, downward

Substituting everything into the equation we get:

-16.5=13.0t-4.9t^2\\4.9t^2-13.0t-16.5=0

Solving the equation for t, we find the time of flight of the ball:

t = -0.94 s

t = 3.59 s

We ignore the 1st solution since it is negative, so the ball reaches the water after 3.59 seconds.

Now we analyze the horizontal motion of the ball. The horizontal velocity is constant and it is:

v_x=u cos \theta=(23.5)(cos 33.5^{\circ})=19.6 m/s

Therefore, the horizontal distance covered in a time t is

d=v_x t

And substituting t = 3.59 s, we find

d=(19.6)(3.59)=70.4 m

So, the horizontal distance covered by the ball before hitting the water is 70.4 m.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

4 0
3 years ago
Mars has two moons, Phobos and Deimos. Phobos orbits Mars at a distance of 9380 km from Mars's center, while Deimos orbits at 23
Sloan [31]

Answer:

The ratio is   \frac{T_1}{T_2}  = 3.965

Explanation:

From the question we are told that

   The  radius of Phobos orbit is  R_2 =  9380 km

    The radius  of Deimos orbit is  R_1  =  23500 \  km

Generally from Kepler's third law

    T^2 =  \frac{ 4 *  \pi^2 *  R^3}{G * M  }

Here M is the mass of Mars which is constant

        G is the gravitational  constant

So we see that \frac{ 4 *  \pi^2  }{G * M  } =  constant

   

    T^2 = R^3   *  constant      

=>  [\frac{T_1}{T_2} ]^2 =  [\frac{R_1}{R_2} ]^3

Here T_1 is the period of Deimos

and  T_1 is the period of  Phobos

So

      [\frac{T_1}{T_2} ] =  [\frac{R_1}{R_2} ]^{\frac{3}{2}}

=>    \frac{T_1}{T_2}  =  [\frac{23500 }{9380} ]^{\frac{3}{2}}]

=>    \frac{T_1}{T_2}  = 3.965

   

8 0
3 years ago
Use the drop-down menu to complete the statement.
SOVA2 [1]

Answer:

static discharge

Explanation:

I hope this helps

7 0
3 years ago
Read 2 more answers
Other questions:
  • un esquiador parte del reposo y se desliza pendiente abajo recorriendo 9m en 3s, con una aceleración constante calcular acelerac
    14·1 answer
  • Luke and Carrie are driving down a straight section of the interstate at 70 mph in Luke's new convertible. Carrie is drinking a
    11·2 answers
  • Which number is 0.0069 expressed in scientific notation? 6.9 × 10 4 6.9 × 10 –6 6.9 × 10 –4 6.9 × 10 –3
    14·1 answer
  • You are stopped a red light and you are in the front car at an intersection. Thinking as a defensive driver, describe what your
    6·1 answer
  • 50W of power is generated using 100J of work to move a box onto a shelf. How long did it take to move the box from the floor to
    11·1 answer
  • Hisisisisisisiisisiis
    13·2 answers
  • Juan compró un carro que dicen que es muy rápido. Cuándo lo probó recorrió una distancia de 4500m en tan solo 5 min. ¿Qué veloci
    11·1 answer
  • A student asks the following question:
    14·1 answer
  • A jet plane flying 600 m/s experiences an acceleration of 4g when pulling out of the dive. What is the radius of curvature of th
    8·1 answer
  • Select the correct answer.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!