<h3><u>Answer;</u></h3>
The statements that are True are;
- Upon binding a molecule of oxygen, Hb undergoes a conformational change that makes the binding of subsequent O2 molecules easier.
- The conformational change induced in Hb upon binding oxygen is the result of a small movement (0.2 Å) of the iron cation in the center of heme.
- Site-directed mutagenesis studies have indicated that the cooperativity of O2 binding in Hb is attributable to the movement of the F helix in Hb.
<h3><u>Explanation</u>;</h3>
- Hemoglobin is a key pigment in the blood that transports oxygen gas to all the tissues in the body. It is made up of two types of chains; that is two alpha chains and two beta chains.
- in its deoxygenated state hemoglobin has a low affinity for oxygen compared to myoglobin. When oxygen is bound to the first subunit of hemoglobin it leads to subtle changes to the quaternary structure of the protein. This in turn makes it easier for a subsequent molecule of oxygen to bind to the next subunit.
Answer:
Molarity of solution is 1.10x10⁻³ M
Explanation:
Solute NaOCl
7.4% by mass means, that in 100 grams of solution, we have 7.4 g of solute.
Molar mass of NaOCl = 74.45 g/m
Mol = Mass / Molar mass
7.4 g / 74.45 g/m = 0.099 moles
Density of solution = 1.12 g/mL
Density = Mass / volume
1.12g/mL = 100 g / volume
Volume = 100 g / 1.12g/mL = 89.3 mL
Molarity = mol /L
89.3 mL = 0.0893 L
0.099 moles / 0.0893 L = 1.10x10⁻³ M
Answer:
Cohesion
Explanation:
Depending on how attracted molecules of the same substance are to one another, the substance will be more or less cohesive. Hydrogen bonds cause water to be exceptionally attracted to each other. Therefore, water is very cohesive.
In a car driven by a gasoline combustion engine, heat energy is quickly converted into kinetic energy which results in the motion of the car.
According to the law of the conservation of energy, energy cannot be destroyed or created. It is can only be transformed from one form to another.