Answer:metres
Explanation:It would be best to measure the length of an object in metric system such as millimeter, centimeter, mere etc..
Answer:
Rb2CO3(aq)+Fe(C2H3O2)2(aq)--> 2Rb(C2H3O2)(aq) + FeCO3(s)
Explanation:
The reaction shown in the answer is the reaction of rubidium carbonate and iron II acetate. Rubidium is far more reducing than Fe II hence it can displace Fe II from its salt as shown.
The reducing property of metals depends on the value of their individual electrode potential values. For rubidium, its standard reduction potential is -2.98 V while that of Fe II is -0.44V. Hence rubidium can displace Fe II from its salt as shown above.
Answer:
there are 6.022*1023 atoms
Explanation:
32 g S * (1 mole S/32 g S) * (6.022*1023 atoms/1 mole S)= 6.022*1023 atoms
B cause it tells how it moves
Answer:
Mass = 9.58 g
Explanation:
Given data:
Mass of Fe₂O₃ formed = ?
Mass of Fe = 6.7 g
Solution:
Chemical equation:
4Fe + 3O₂ → 2Fe₂O₃
Number of moles of Fe:
Number of moles = mass/molar mass
Number of moles = 6.7 g/ 55.8 g/mol
Number of moles = 0.12 mol
now we will compare the moles of Fe and Fe₂O₃.
Fe : Fe₂O₃
4 : 2
0.12 : 2/4×0.12 = 0.06 mol
Mass of Fe₂O₃:
Mass = number of moles × molar mass
Mass = 0.06 mol × 159.69 g/mol
Mass = 9.58 g