Answer:

Explanation:
Hello,
Considering the ideal equation of state:

The moles are defined in terms of mass as follows:

Whereas
the gas' molar mass, thus:

Now, since the density is defined as the quotient between the mass and the volume, we get:

Solving for
:

Thus, the result is given by:
![density=\frac{(1atm)(44g/mol)}{[0.082atm*L/(mol*K)]*298.15K} \\density=1.8g/L=1.8x10^{-3}g/mL](https://tex.z-dn.net/?f=density%3D%5Cfrac%7B%281atm%29%2844g%2Fmol%29%7D%7B%5B0.082atm%2AL%2F%28mol%2AK%29%5D%2A298.15K%7D%20%5C%5Cdensity%3D1.8g%2FL%3D1.8x10%5E%7B-3%7Dg%2FmL)
Best regards.
The answer will be 3 moles
Explanation:
Chemical reaction equation for the give decomposition of
is as follows:.

And, initially only
is present.
The given data is as follows.
= 2.3 atm at equilibrium
= 0.69 atm
Therefore,

= 0.23 aatm
So,
= 2.3 - 2(0.23)
= 1.84 atm
Now, expression for
will be as follows.


= 
= 0.0224
or, 
Thus, we can conclude that the pressure equilibrium constant for the decomposition of ammonia at the final temperature of the mixture is
.
Answer:
7 to 1
Explanation:
As you move from row ----- to row ------ in the periodic table, the atomic radius of the elements DECREASES.?
And we have 7 rows in a periodic table, so the answer has to either 1 to 7 or 7 to 1
Theoretically,
Atomic size increase as we move from top to bottom as an extra shell gets added up with every period.
SO, the answer is, 7 to 1