Answer:
Wavelength = 489.52 nm
Explanation:
Given that the wavelength of the light = 633 nm
The time taken by the light in unknown liquid = 1.38 ns
Also,
1 ns = 10⁻⁹ s
So, t = 1.38 × 10⁻⁹ s
Also,
Distance = 32.0 cm = 0.32 m ( 1 cm = 0.01 m)
<u>So, speed of the light in the liquid = Distance / Time = 0.32 / 1.38 × 10⁻⁹ m/s = 2.32 × 10⁸ m/s</u>
Frequency of the light does not change when light travels from one medium to another. So,





So,

<u>Wavelength = 489.52 nm</u>
That it's more puashe on the back of the canoe and that effects the back of the canoe to fall back
Answer:c
Explanation:
If the Force of gravity suddenly stops acting on Planets then Planets would continue to move straight in the initial direction.
Gravity constantly acts on Planets to change their trajectory each instant thus in absence of it if a planet is moving in a circular path then it would follow the path of the tangent to the circular path as gravity force is absent to change its trajectory.
Answer:
The correct answer is - Plantae.
Explanation:
Drosera m<em>agnifica</em> is discovered in 2015 for the first time and the characteristics this organism's cell shows are -
- permanent vacuoles
- surrounded by cellulose layer
Vacuoles are present in both Plantae and Animalia kingdom of the eukaryotic organism but in animal cells, there are small and numerous vacuoles present and they are not permanent whereas in plant cells vacuoles are present permanently.
The cell of an animal cell has no surrounding layer other than cell membrane while in the plant cell there is a supporting and protecting layer of cellulose cell wall present.
On the basis of the given characteristics, it is confirmed that the Drosera magnifica belongs to Plantae kingdom.
Since both cars move together after the collision, then this is an example of an inelastic collision. The formula for an inelastic collision is as follows:
m1u1 + m2u2 = (m1 + m2)v
Where:
m1 = mass of the first object
m2 = mass of the second object
u1 = initial velocity of the first object
u2 = initial velocity of the second object
v = final velocity
Substituting the given values to solve for v:
900*22 + 900*15 = (900 + 900)v
v = 18.5 m/s