Answer: 71.93 *10^3 N/C
Explanation: In order to calculate the electric field from long wire we have to use the Gaussian law, this is:
∫E*dr=Q inside/εo Q inside is given by: λ*L then,
E*2*π*r*L=λ*L/εo
E= λ/(2*π*εo*r)= 4* 10^-6/(2*3.1415*8.85*10^-12*2 )= 71.93 * 10^3 N/C
This is a question that would have literally have taken two seconds to look up on google but the answer is 1.88 years.
Answer: B. If an object's velocity is changing,it's either experiencing acceleration or deceleration.
Acceleration is defined as the rate at which an object changes its velocity. This implies that if an object is changing it's velocity it is experiencing acceleration/ deceleration.
Acceleration is a vector quantity that has both a magnitude and time.
It is represented as
Acceleration= change in velocity/time.
The SI unit for acceleration is m/s^2
Answer:
x=?
dt=?
vi=23m/s
vf=0m/s (it stops)
d=0.25m/s^2
time =
vf=vi+d: 0=23m/s+(0.25m/s^2)t
t=92s
displacement=
vf^2=vi^2+2a(dx)
23^2=0^2+2(0.25m/s^2)x =-1058m
Explanation:
you can find time from vf = vi + a(Dt): 0 = 23 m/s + (0.25 m/s/s)t so t = 92 s and you can find the displacement from vf2 = vi2 + 2a(Dx) and find the answer in one step: 232 = 02 + 2(0.25 m/s/s)x so x = -1058 m
During the diving when a diver jumps off from platform he brings her knees and arms closer to the body
This is because when diver is in air he don't have any torque about his center of mass which shows that angular momentum of his body will remain constant during his motion in air
Now we can say product of his moment of inertia and his angular speed will remain constant always
So here if we decrease the moment of inertia of the body during our motion then angular speed will increase so that product will remain constant
and this is what the diver use during his diving
so correct answer will be
<u><em>It decreases her moment of inertia.</em></u>