1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
8

What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.

Physics
1 answer:
Studentka2010 [4]3 years ago
4 0

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

You might be interested in
A projectile is to be launched at an angle of 30° so that it falls beyond the pond of length 20 meters as shown in the figure.
marin [14]

Answer: A

Explanation:

I want my points so yea

4 0
2 years ago
Two charged point particle are located at two vertices of an equilateral triangle and the electric field is zero at the third ve
Debora [2.8K]

Answer:

Option E

Explanation:

In the presence of two point charges at the two vertices of an equilateral triangle, the resultant electric field at the third vertex due to these charges can not be zero whether the charges are identical or not.

The reason being that only of the x or y component of the field can be cancelled out in either case still the total field can't be reduced to zero.

This can only be achieved if another charge is present.

4 0
3 years ago
How to make my rabbit bark​
andre [41]

Answer:

l.j

Explanation:

7 0
2 years ago
Read 2 more answers
A 60 g ball of clay is thrown horizontally at 40 m/s toward a 1.5 kg block sitting at rest on a frictionless surface. the clay h
Bingel [31]
The solution for this problem is:
Let u denote speed. 

Equating momentum before and after collision: 
= 0.060 * 40 = (1.5 + 0.060) u 
= 2.4 = 1.56 u
= 2.4 / 1.56 = 1.56 u / 1.56
= 1.6 m / s is the answer for this question. This is the speed after the collision.
7 0
2 years ago
How much work does this force do as the particle moves along the x-axis from x = 0 to x = l? express your answer in terms of the
nydimaria [60]
<h3><u>Answer</u>;</h3>

= F0 L ( 1 - 1/e )

<h3><u>Explanation;</u></h3>

Work done is given as the product of force and distance.

In this case;

Work done  = ∫︎ F(x) dx  

                    = F0 ∫︎ e^(-x/L) dx  

                    = F0 [ -L e^(-x/L) ] between 0 and L  

                    = F0 L ( 1 - 1/e )

3 0
3 years ago
Other questions:
  • Which sentence correctly describes a friction force? A. It acts in the same direction as the motion of an object. B. It acts in
    14·1 answer
  • How can health literacy help people become more productive?
    11·2 answers
  • Mark's uncle is about to have a procedure to treat his prostate cancer. The treatment involves placement of small pellets close
    7·1 answer
  • If F(theta)=tan theta=3, find F(theta+pi)
    7·1 answer
  • A car is traveling at 19m/s. It slows to a stop at a constant rate over 4.2 seconds. How far did the car travel during the 4.2se
    8·1 answer
  • If white light shines on an object and the red, orange, green, blue and purple light is absorbed. What color does your eye see?
    12·2 answers
  • Now it's your turn
    14·1 answer
  • The two basic units of weight in the metric system is the___?
    11·1 answer
  • Tell your best joke or get L bozo​
    14·1 answer
  • 7th grade science i mark as brainliest
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!