B hibernation but it deppends on the animal
Answer:
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution.
Explanation:
<em>Which of the statements correctly describe the properties of a buffer?</em>
a. The conjugate base of an acidic buffer will accept hydrogen protons when a strong acid is added to the solution. TRUE. The conjugate base neutralizes the excess of hydrogen protons.
b. An acidic buffer solution is a mixture of a weak acid and its conjugate base. TRUE.
c. An acidic buffer solution is a mixture of a weak base and its conjugate acid. FALSE. This is a basic buffer solution.
d. The weak acid of an acidic buffer will accept hydrogen protons when a strong base is added to the solution. FALSE. The weak acid will react with the hydroxyl ions from the added base.
e. The weak acid of an acidic buffer will donate hydrogen protons when a strong base is added to the solution. TRUE. These hydrogen protons will form water.
f. The conjugate base of an acidic buffer will donate hydrogen protons when a strong acid is added to the solution. FALSE. It will accept hydrogen protons.
Bromine vs Chlorine | Br vs Cl
Halogens are group VII elements in the periodic table, and all are electronegative elements and have the capability to produce -1 anions.
Bromine
Bromine is denoted by the symbol Br. This is in the 4th period of the periodic table between chlorine and iodine halogens. Its electronic configuration is [Ar] 4s2 3d10 4p5. The atomic number of bromine is 35. Its atomic mass is 79.904. Bromine staChlorine is an element in the periodic table which is denoted by Cl. It is a halogen (17th group) in the 3rd period of the periodic table. The atomic number of chlorine is 17; thus, it has seventeen protons and seventeen electrons. Its electron configuration is written as 1s2 2s2 2p6 3s2 3p5. Since the p sub level should have 6 electrons to obtain the Argon, noble gas electron configuration, chlorine has the ability to attract an electron. ys as a red-brown color liquid at room temperature.
4
N
a
+
O
2
→
2
N
a
2
O
.
By the stoichiometry of this reaction if 5 mol natrium react, then 2.5 mol
N
a
2
O
should result.
Explanation:
The molecular mass of natrium oxide is
61.98
g
⋅
m
o
l
−
1
. If
5
m
o
l
natrium react, then
5
2
m
o
l
×
61.98
g
⋅
m
o
l
−
1
=
154.95
g
natrium oxide should result.
So what have I done here? First, I had a balanced chemical equation (this is the important step; is it balanced?). Then I used the stoichiometry to get the molar quantity of product, and converted this molar quantity to mass. If this is not clear, I am willing to have another go