Answer:
thanks for the points liar
Explanation:
The picture isn’t clear so I can’t read the dimensions of the box but I can try my best to guide u through the question.
For part a u need to find the volume of the box as that will equal the volume of sand that can be filled inside.
For this u multiply the height, width and length of the box.
For part b the mass of sand alone will be
=Mass of box + sand - Mass of empty box
=216 - 40
=176 grams
For part c the density of sand can be calculated by the formula
Density= Mass/Volume
So the mass (176g) / volume from part a
For part d u need to know that something will float if it has a lower density than what it is floating in. If the final density of sand that was found in part c is less than the density of gold (19.3 g/cm^3) it will float. Otherwise it will sink.
Hope this helped!
Answer:
C. 28.09 amu
Explanation:
The natural occurring element exist in 3 isotopic forms: namely X-28 (27.977 amu, 92.23% abundance), X-29 (28.976 amu, 4.67% abundance) and X-30 (29.974 amu, 3.10% abundance).
The atomic weight of elements depends on the isotopic abundance. If you know the fractional abundance and the mass of the isotopes the atomic weight can be computed.
The atomic weight is computed as follows:
atomic weight = mass of X-28 × fractional abundance + mass of X-29 × fractional abundance + mass of X-30 × fractional abundance
atomic weight = 27.977 × 0.9223 + 28.976 × 0.0467 + 29.974 × 0.0310
atomic weight = 25.8031871 + 1.3531792 + 0.929194
atomic weight = 28.0855603 amu
To 2 decimal place atomic weight = 28.09 amu
D? maybe i’m trying to. see if it’s d or b