The one tossed upward on the Moon will rise to a greater maximum height before starting to fall.
It'll also spend more total time in flight before returning to the hand that tossed it. (I almost said that it'll spend "more time in the air". That would be silly on the Moon.)
Answer:
1.40625 kg-m^2
Explanation:
Supposing we have to calculate rotational moment of inertia
Given:
Mass of the ball m= 2.50 kg
Length of the rod, L= 0.78 m
The system rotates in a horizontal circle about the other end of the rod
The constant angular velocity of the system, ω= 5010 rev/min
The rotational inertia of system is equal to rotational inertia of the the ball about other end of the rod because the rod is mass-less

=1.40625 kg-m^2
m= mass of the ball and L= length of the ball
The answer is b. According to the law of conservation of energy, energy can never be created nor destroyed, only transferred from one form to another.