1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lyudmila [28]
3 years ago
5

An airplane propeller is 2.68 m in length (from tip to tip) and has a mass of 107 kg. When the airplane's engine is first starte

d, it applies a constant torque of 1930 Nm to the propeller, which starts from rest.
a. What is the angular acceleration of the propeller? Treat the propeller as a slender rod.
b. What is the propeller's angular speed after making 5.00 rev?
c. How much work is done by the engine during the first 5.00 rev?
d. What is the average power output of the engine during the first 5.00 rev?
e. What is the instantaneous power output of the motor at the instant that the propeller has turned through 5.00 rev?
Physics
1 answer:
telo118 [61]3 years ago
7 0

Answer:

a)30.14 rad/s2

b)43.5 rad/s

c)60633 J

d)42 kW

e)84 kW

Explanation:

If we treat the propeller is a slender rod, then its moments of inertia is

I =\frac{mL^2}{12} = \frac{107*2.68^2}{12} = 64.04 kgm^2

a. The angular acceleration is Torque divided by moments of inertia:

\alpha = \frac{T}{I} = \frac{1930}{64.04} = 30.14 rad/s^2

b. 5 revolution would be equals to 10\pi rad, or 31.4 rad. Since the engine just got started

\omega^2 = 2\alpha\theta = 2*30.14*31.4 = 1893.5

\omega = \sqrt{1893.5} = 43.5 rad/s

c. Work done during the first 5 revolution would be torque times angular displacement:

W = T*\theta = 1930 * 31.4 = 60633 J

d. The time it takes to spin the first 5 revolutions is

t = \frac{\omega}{\alpha} = \frac{43.5}{30.14} = 1.44 s

The average power output is work per unit time

P = \frac{W}{t} = \frac{60633}{1.44} = 41991 W or 42 kW

e.The instantaneous power at the instant of 5 rev would be Torque times angular speed at that time:

P_i = T*\omega = 1930*43.5=83983 W or 84 kW

You might be interested in
Which kind of waves is not part of the electromagnetic spectrum?
Dennis_Churaev [7]
The answer is radio waves
5 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
The temperature of a body of water influences _____
Maslowich
The temperature of the air above it
5 0
3 years ago
Read 2 more answers
A proton moving at 8.00 106 m/s through a magnetic field of magnitude 1.72 T experiences a magnetic force of magnitude 7.20 10-1
gladu [14]

Answer:

19.1 deg

Explanation:

v = speed of the proton = 8 x 10⁶ m/s

B = magnitude of the magnetic field = 1.72 T

q = magnitude of charge on the proton = 1.6 x 10⁻¹⁹ C

F = magnitude of magnetic force on the proton = 7.20 x 10⁻¹³ N

θ = Angle between proton's velocity and magnetic field

magnitude of magnetic force on the proton is given as

F = q v B Sinθ

7.20 x 10⁻¹³ = (1.6 x 10⁻¹⁹) (8 x 10⁶) (1.72) Sinθ

Sinθ = 0.327

θ = 19.1 deg

4 0
3 years ago
A hockey puck is sliding across a frozen pond with an initial speed of 9.3 m/s. It comes to rest after sliding a distance of 42.
kondaur [170]

Answer:

The coefficient of kinetic friction between the puck and the ice is 0.11

Explanation:

Given;

initial speed, u = 9.3 m/s

sliding distance, S = 42 m

From equation of motion we determine the acceleration;

v² = u² + 2as

0 = (9.3)² + (2x42)a

- 84a = 86.49

a = -86.49/84

|a| = 1.0296

F_k = \mu_k N = ma

where;

Fk is the frictional force

μk is the coefficient of kinetic friction

N is the normal reaction = mg

μkmg = ma

μkg = a

μk = a/g

where;

g is the gravitational constant = 9.8 m/s²

μk = a/g

μk = 1.0296/9.8

μk = 0.11

Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11

3 0
3 years ago
Other questions:
  • Count Rumford concluded that heat energy is produced by
    11·1 answer
  • Which statement correctly describes the differences between positive and negative acceleration? Positive acceleration describes
    13·2 answers
  • As 390 g of hot milk cools in a mug, it transfers 30,000 J of heat to the environment. What is the temperature change of the mil
    8·2 answers
  • The earth's orbital angular speed in rad/s due to its motion around the sun
    11·1 answer
  • A water skier is pulled by a boat traveling with a constant velocity. Which one of the following statements is false concerning
    14·1 answer
  • Each step in any energy conversion process will _____.
    9·1 answer
  • A man walks 600 m [E47°N], then 500 m [N38°W], then 300 m [W29°S], and finally 400 m [S13°E]. Find his resultant displacement.
    13·1 answer
  • A ball is thrown vertically upward from the top of a building 80 feet tall with an initial velocity of 64 feet per second. The d
    6·2 answers
  • Please help me with the correct answer​
    9·1 answer
  • Cita ejemplos de una nación que viva en distintos estados.¿Por qué se da está situación?​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!