Answer:
1) Motion of air mass moving from equator northward (closer to earth axis)
2) Motion of object in orbit
3) Collision of 2 objects
4) Skater changing rotation by extension of arms
5) Motion of rocket due to velocity of expelled gas
Answer:
Landed before it explodes
Explanation:
vf = vi + at,
0 = 145 - (9.8)t,
t = 14.79 s (Time to reach highest point)
14.79 x 2 = 29.59 s (Time to land on the ground)
It will have landed before it explodes because both the time to reach the highest point and the time to land on the ground are less than 32 seconds.
Answer
22.5 m/s
Explanation
We shall use the trigonometric ratio cosine to find the horizontal component.
cos = adjacent/hypotenuse
Adjacent is the horizontal and hypotenuse is the fly speed.
cos 30° = horizontal / 26
horizontal velocity = 26 × cos 30°
= 26 × 0.866
= 22.5166
= 22.5 m/s
Explanation:
It is given that The Moon's center is 3.9x10⁸ m from Earth's center. The moon 1.5x10⁸ km from the Sun's center. We need to find the ratio of the gravitational forces exerted by Earth and the Sun on the Moon.
The gravitational force is given by :

It means 
So,

r₁ = 3.9x10⁸ km
r₂= 1.5x10⁸ km
So,

Hence, the ratio of the gravitational forces exerted by Earth and the Sun on the Moon is 5:13.