Answer & Explanation:
a)
Lenz's law states that the direction of induced electric current is always such that, it opposes the change in magnetic flux.
In a drop ride, the hub on which we sit and are hung to is an electromagnet and there are many such magnets mounted on the columns of the support. what happens is these electromagnets (in support) generate a repulsive magnetic field with respect to the field generated by the hub solenoids. this results in lift generation till the top of ride. reaching the top, the bar solenoids are at their maximum repulsive force. Then the solenoids in column are set current less means electric supply is cut off. this makes you fall under the effect of gravity. by the time you are half way down, column solenoids are turned on again. As the hub solenoid approaches every single electromagnet in supporting columns. Due to change in magnetic field (with respect to lenz's law) an opposing current induces further providing resistance to the fall, this continues until the ride comes to rest completely. This is how it works.
c) In addition, highly compressive springs, dampers, viscous dampers, etc. could be used in its place.
but the above listed cannot provide a differential braking,
have a limited lifecycle,
will provide resistance during lift also,
require higher maintenance
Answer: current I = 0.5 A
Explanation:
Given that the
Potential difference V = 10V
Resistance R = 20 ohms
According to ohms law
V = IR
Where
V = potential difference
I = current
R = resistance
Make I the subject of formula
I = V/R
I = 10/20
I = 0.5 Ampere
Answer:
A. topsoil the answer
Explanation:
I think its a correct answer
Answer:
65 m/s
Explanation:
v=v0+at <=> v = 11 + 12 t ∧ t = 4.5 s <=> v = 11 + 12×4.5 <=> v = 65 m/s
Answer:
12°F
Explanation:
Calculation for how much subcooling is there in the condenser
Since the CONDENSING TEMPERATURE for 417.4 psig discharge pressure is 120 degrees (120°) which means that the amount of subcooling that is there in the condenser will be calculated using this formula
Amount of Condenser subcooling= Condensing Temperature discharge pressure -Condenser outlet temperature
Let plug in the formula
Amount of Condenser subcooling=120°-108f
Amount of Condenser subcooling=12°F
Therefore the amount of subcooling that is there in the condenser will be 12°F