Answer:
r = 58.44 [m]
Explanation:
To solve this problem we must use the following equation that relates the centripetal acceleration with the tangential velocity and the radius of rotation.
a = v²/r
where:
a = centripetal acceleration = 15.4 [m/s²]
v = tangential speed = 30 [m/s]
r = radius or distance [m]
r = v²/a
r = 30²/15.4
r = 58.44 [m]
Resistance = V / I
= 12 / 3 = 4
Answer:
<h2><em>
12.45eV</em></h2>
Explanation:
Before calculating the work function, we must know the formula for calculating the kinetic energy of an electron. The kinetic energy of an electron is the taken as the difference between incident photon energy and work function of a metal.
Mathematically, KE = hf - Ф where;
h is the Planck constant
f is the frequency = c/λ
c is the speed of light
λ is the wavelength
Ф is the work function
The formula will become KE = hc/λ - Ф. Making the work function the subject of the formula we have;
Ф = hc/λ - KE
Ф = hc/λ - 1/2mv²
Given parameters
c = 3*10⁸m/s
λ = 97*10⁻⁹m
velocity of the electron v = 3.48*10⁵m/s
h = 6.62607015 × 10⁻³⁴
m is the mass of the electron = 9.10938356 × 10⁻³¹kg
Substituting the given parameters into the formula Ф = hc/λ - 1/2mv²
Ф = 6.63 × 10⁻³⁴*3*10⁸/97*10⁻⁹ - 1/2*9.11*10⁻³¹(3.48*10⁵)²
Ф = 0.205*10⁻¹⁷ - 4.555*10⁻³¹*12.1104*10¹⁰
Ф = 0.205*10⁻¹⁷ - 55.163*10⁻²¹
Ф = 0.205*10⁻¹⁷ - 0.0055.163*10⁻¹⁷
Ф = 0.1995*10⁻¹⁷Joules
Since 1eV = 1.60218*10⁻¹⁹J
x = 0.1995*10⁻¹⁷Joules
cross multiply
x = 0.1995*10⁻¹⁷/1.60218*10⁻¹⁹
x = 0.1245*10²
x = 12.45eV
<em>Hence the work function of the metal in eV is 12.45eV</em>
The situation given above is that of the geometric sequence with first term equal to 75 meters and the common ratio equal to 0.40. The sum of the terms for an infinite geometric sequence is expressed in the equation,
S = a1/(1 - r)
Substituting,
S = (75 m) / (1 - 0.4) = 125 m
Therefore, the total distance that the pendulum had swung before finally coming to rest is 125 m.