Answer: 11.5 moles of carbon
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of carbon = 6.02 x 10^23 atoms
Z moles = 6.93 x 10^24 atoms
To get the value of Z, cross multiply:
(6.93 x 10^24 atoms x 1mole) = (6.02 x 10^23 atoms x Z moles)
6.93 x 10^24 = (6.02 x 10^23 x Z)
Z = (6.93 x 10^24) ➗ (6.02 x 10^23)
Z = 1.15 x 10
Z = 11.5 moles
Thus, there are 11.5 moles of carbon.
Explanation:
Gravitational potential energy
= mgh
= (5kg)(9.81N/kg)(150m)
= 7357.5J.
Answer:
40.02 calories
Explanation:
V = 10 mL = 10g
we know t went <em>up</em> by 4°C, this is our ∆t as it is a change.
Formula that ties it together: Q = mc∆t
where,
Q = energy absorbed by water
m = mass of water
c = specific heat of water (constant)
∆t = temperature change
Q = (10 g) x (4.186 J/g•°C) x (4°C)
Q = 167.44 J
Joules to Calories:
167.44 J x 1 cal/4.184 J = 40.02 calories
(makes sense as in image it is close to the value).
What’s wrong? ...........:.........
The temperature of a reaction causes its rate of reaction to increase because the heat inputted into the solution excites the electrons that make up the solution, therefore making them move faster, colliding more often with other molecules of the solution. This increase in collision rates causes the rate of reaction to increase.