Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer:
the rate that the energy of a system is transformed
Explanation:
We can define energy as the capacity or ability to do work. Power is defined as the rate of doing work or the rate at which energy is transformed. It can also be regarded as the time rate of energy transfer. In older physics literature, power is sometimes referred to as activity.
Power is given by energy/time. Its unit is watt which is defined as joule per second. Another popular unit of power is horsepower. 1 horsepower = 746 watts.
Very large magnitude of power is measured in killowats and megawatts.
is iron and aluminium is there
I think its Oxygen.
ancient cyanobacteria produced Earth's first oxygen-rich atmosphere, which allowed the eventual rise of eukaryotes. T<span>he chloroplasts of eukaryotic algae and plants are derived from cyanobacteria</span>