Answer:
0.414 mole (3 sig. figs.)
Explanation:
Given grams, moles = mass/formula weight
moles in 18.2g CO₂(g) = 18.2g/44g/mole = 0.413636364 mole (calc. ans.)
≅ 0.414 mole (3 sig. figs.)
Answer:
- Last choice: <em><u>- 3.72°C</u></em>
Explanation:
The freezing point depression in a solvent is a colligative property: it depends on the number of solute particles.
The equation to predict the freezing point depression in a solvent is:
Where,
- ΔTf is the freezing point depression of the solvent,
- Kf is the cryoscopic molal constant of the solvent, and i is the Van'f Hoff factor, which is the number of ions produced by each unit formula of the ionic compound.
The calcualtions are in the attached pdf file. Please, open it by clicking on the image of the file.
Answer:
Its b its the state not anything else
Not sure good luck on finding someone too help you
Answer:
223 g O₂
Explanation:
To find the mass of oxygen gas needed, you need to (1) convert moles Al to moles O₂ (via the mole-to-mole ratio from reaction coefficients) and then (2) convert moles O₂ to grams O₂ (via the molar mass). When writing your ratios/conversions, the desired unit should be in the numerator in order to allow for the cancellation of the previous unit. The final answer should have 3 sig figs because the given value (9.30 moles) has 3 sig figs.
4 Al + 3 O₂ ----> 2 Al₂O₃
^ ^
Molar Mass (O₂): 32.0 g/mol
9.3 moles Al 3 moles O₂ 32.0 g
------------------- x --------------------- x -------------------- = 223 g O₂
4 moles Al 1 mole