Answer:
7.5 moles
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3Cu + 2H3PO4 —> Cu3(PO4)2 + 3H2
From the balanced equation above,
3 moles of Cu reacted with 2 moles of H3PO4.
Therefore, Xmol of Cu will react with 5 moles of H3PO4 i.e
Xmol of Cu = (3 x 5)/2
Xmol of Cu = 7.5 moles
Therefore, 7.5 moles of Cu are needed to react with 5 moles of H3PO4.
hydrogen and carbon, hope that helped
Answer:
1.25 M
Explanation:
Step 1: Given data
Mass of KI (solute): 20.68 g
Volume of the solution: 100 mL (0.100 L)
Step 2: Calculate the moles of solute
The molar mass of KI is 166.00 g/mol.
20.68 g × 1 mol/166.00 g = 0.1246 mol
Step 3: Calculate the molar concentration of KI
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.1246 mol/0.100 L= 1.25 M
Mostly and for what I would say is A
Answer:
0.1035 M
Explanation:
Considering:
Sodium chloride will furnish Sodium ions as:
Given :
For Sodium chloride :
Molarity = 0.288 M
Volume = 3.58 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 3.58×10⁻³ L
Thus, moles of Sodium furnished by Sodium chloride is same the moles of Sodium chloride as shown below:
Moles of sodium ions by sodium chloride = 0.00103104 moles
Sodium sulfate will furnish Sodium ions as:
Given :
For Sodium sulfate :
Molarity = 0.001 M
Volume = 6.51 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 6.51 ×10⁻³ L
Thus, moles of Sodium furnished by Sodium sulfate is twice the moles of Sodium sulfate as shown below:
Moles of sodium ions by Sodium sulfate = 0.00001302 moles
Total moles = 0.00103104 moles + 0.00001302 moles = 0.00104406 moles
Total volume = 3.58 ×10⁻³ L + 6.51 ×10⁻³ L = 10.09 ×10⁻³ L
Concentration of sodium ions is:
<u>
The final concentration of sodium anion = 0.1035 M</u>