Answer:
The temperature required is near about 3 million kelvin
Explanation:
The brilliance of the star results from the nuclear reaction that take place in the core of the star and radiate a huge amount of thermal energy resulting from the fusion of hydrogen into helium.
For this reaction to take place, the temperature of the star's core must be near about 3 million kelvin.
The hydrogen atoms collide and starts and the energy from the collision results in the heating of the gas cloud. As the temperature comes to near about
, the nuclear fusion reaction takes place in the core of the gas cloud.
The huge amount of thermal energy from the nuclear reaction gives the gas cloud a brilliance resulting in a protostar.
The average speed of the given car is 2.22 s and 3.13 s for 0.25 m and 0.50 m distance respectively.
<h3>How to calculate the Average speed?</h3>
The average speed can be calculated by adding the speed of each trial divided by the number of trials,
For 0.25 m the average speed will be:

For the 0.50 m, the average speed will:

Therefore, the average speed of the given car is 2.22 s and 3.13 s for 0.25 m and 0.50 m distance respectively.
Learn more about Average speed:
brainly.com/question/26386984
A)
It is a launch oblique, therefore the initial velocity in the vertical direction is zero. Space Hourly Equation in vertical, we have:
Through Definition of Velocity, comes:

B)
Using the Velocity Hourly Equation in vertical direction, we have:
The angle of impact is given by:

If you notice any mistake in my english, please let me know, because i am not native.
For this case, the first thing we must do is define a reference system.
Suppose that the positive direction of the reference system is upward.
We have that the sum of forces in the vertical axis is given by:
Fy = Fp - Fg
Substituting values:
Fy = 5500 - 6000
Fy = - 500
The negative sign means that the direction of the force with respect to the defined coordinate system is downward.
Answer:
The net force is:
↓ 500N
Answer:
168.57 mV
Explanation:
Initial magnetic flux = BA , B magnetic field and A is area of loop
= .35 x 3.14 x .37²
= .15 Weber
Final magnetic flux
= - .2 x 3.14 x .37²
= - .086 Weber
change in flux
.15 + .086
= .236 Weber
rate of change of flux
= .236 / 1.4
= .16857 V
= 168.57 mV