<h3>
Answer: 130 newtons</h3>
===============================================================
Explanation:
We'll need the acceleration first.
- The initial speed (let's call that Vi) is 8.0 m/s
- The final speed (Vf) is 0 m/s since Sam comes to a complete stop at the end.
- This happens over a duration of t = 4.0 seconds
The acceleration is equal to the change in speed over change in time
a = acceleration
a = (change in speed)/(change in time)
a = (Vf - Vi)/(4 seconds)
a = (0 - 8.0)/4
a = -8/4
a = -2
The acceleration is -2 m/s^2, meaning that Sam slows down by 2 m/s every second. Negative accelerations are often associated with slowing down. The term "deceleration" can be used here.
Here's a further break down of Sam's speeds at the four points of interest
- At 0 seconds, he's going 8 m/s
- At the 1 second mark, he's slowing down to 8-2 = 6 m/s
- At the 2 second mark, he's now at 6-2 = 4 m/s
- At the 3 second mark, he's at 4-2 = 2 m/s
- Finally, at the 4 second mark, he's at 2-2 = 0 m/s
Next, we'll apply Newton's Second Law of motion
F = m*a
where,
- F = force applied
- m = mass
- a = acceleration
We just found the acceleration, and the mass is fairly easy as all we need to do is add Sam's mass with the sled's mass to get 60+5.0 = 65 kg
So the force applied must be:
F = m*a
F = 65*(-2)
F = -130 newtons
This force is negative to indicate it's pushing against the sled's momentum to slow Sam down.
The magnitude of this force is |F| = |-130| = 130 newtons
When a circuit is complete, or closed, electrons can flow from one end of a battery all the way around, through the wires, to the other end of the battery. Along its way, it will carry electrons to electrical objects that are connected to it – like the light bulb – and make them work!
A motion security line is a system that is used to detect motion.
The input for the system is MOTION and the output is LIGHT. That is, when the system detects motion it switch on light.
Remember, an Input is the information that was inserted into a system while the output is the result of the processed information.

Hi pupil here's your answer ::
➡➡➡➡➡➡➡➡➡➡➡➡➡
Action and Reaction do not act on the same body !! If they acted on the same body, the resultant force will be zero and their could be never accelerated motion.
If both the forces acted on the same body, then if they are equal to opposite direction the object will remain stationary. If on of the forces is greater than other the object will move in the direction of greater force.
If both acted in the same direction there would be an accelrated motion.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this helps . . . . .
The initial speed of car A is 15.18 m/s.
Momentum is defined as mass in motion. If there are two objects (the two objects in motion or only one object in motion and the other in stationary) that collide and no other forces work in the system, the law of momentum conservation applies in the system.
p=p'
pa+pb = pa'+pb'
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
- ma = mass of object A (kg) = 1,783 kg
- mb = mass of object B (kg) = 1,600 kg
- va = speed of object A before collides (m/s)
- va' = speed of object A after collides (m/s) = 8 m/s
- vb = speed of object B before collides (m/s) = 0 m/s
- vb' = speed of object B after collides (m/s) = 8 m/s
- p = momentum before collision (Ns)
- p' = momentum after collision (Ns)
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
(1,783×va) + (1,600×0) = (1,783×8) + (1,600×8)
(1,783×va) + 0 = 14,264+12,800
(1,783×va) = 27,064

va = 15.18 m/s
Learn more about The law of momentum conservation here: brainly.com/question/7538238
#SPJ4