Answer:
D
Explanation:
Hello!
Since the rate must have the following units: mol/(L*s), the suitable units for k, considering that the term [D] [X] leads to mol^2/(L^2) (it means a second order kinetic law), are L/(mol*s), nevertheless, that answer isn't in the given options.
They will be stay the same all the way through. your product must be the same mass
It would be 7 because the acid and base cancel out each other
Answer:
Any binary molecular compound of hydrogen and a Group 6A element above Selenium will be less acidic, so water and dihydrogen sulfide are less acidic in aqueous solution than hydrogen selenide.
Explanation:
Going down in a group increases the atomic radius and a greater atomic radius implyes greater ionic radius.
When ionization takes place in these compounds they yelds protons (hidrogen ion) and an lewis base (anion). The greater the ionic radius the greater its stability, thus the periodic tendency is increaing the acidity of binary hidrogen compounds when going down a group. On the other hand going up a group decreases acidity, so any molecular compound of hydrogen and a Group 6A element above Selenium will be less acidic, so water and dihydrogen sulfide are less acidic in aqueous solution than hydrogen selenide.
Answer:
45.3°C
Explanation:
Step 1:
Data obtained from the question.
Initial pressure (P1) = 82KPa
Initial temperature (T1) = 26°C
Final pressure (P2) = 87.3KPa.
Final temperature (T2) =.?
Step 2:
Conversion of celsius temperature to Kelvin temperature.
This is illustrated below:
T(K) = T(°C) + 273
Initial temperature (T1) = 26°C
Initial temperature (T1) = 26°C + 273 = 299K.
Step 3:
Determination of the new temperature of the gas. This can be obtained as follow:
P1/T1 = P2/T2
82/299 = 87.3/T2
Cross multiply to express in linear form
82 x T2 = 299 x 87.3
Divide both side by 82
T2 = (299 x 87.3) /82
T2 = 318.3K
Step 4:
Conversion of 318.3K to celsius temperature. This is illustrated below:
T(°C) = T(K) – 273
T(K) = 318.3K
T(°C) = 318.3 – 273
T(°C) = 45.3°C.
Therefore, the new temperature of the gas in th tire is 45.3°C