The x -component of the object's acceleration is 2 m/s².
<h3>What's the resultant force along x- direction?</h3>
- Forces along x axis direction are as follows
- 4N along +x axis, so it's taken as +4 N
- 2N along -x axis , so it's taken as -2N.
- Resultant force along x direction = 4N - 2N = 2 N which is along + ve x direction.
<h3>What's the acceleration along x axis direction?</h3>
- As per Newton's second law, Force = mass × acceleration of the object
- Force along x axis= mass × acceleration along x axis= 2N
- Acceleration = 2/ mass = 2/1 = 2 m/s²
Thus, we can conclude that the acceleration along x axis is 2 m/s².
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The forces in (Figure 1) are acting on a 1.0 kg object. What is ax, the x-component of the object's acceleration?
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ1
Answer : When a person applies force and covers distance then the person is doing work on an object.
It is false. The effect of freezing is almost the exact opposite
The answer to this question is "Buffeting". This is an unusual strong wind condition that resulted in the loss of vehicle control. This condition occurs in roads and bridges, across and along mountains that affected vehicles control. The drivers must be alert and put their full attention to overcome this condition.
Let's take the analogy of the baseball pitcher a step farther. When a baseball is thrown in a straight line, we already said that the ball would fall to Earth because of gravity and atmospheric drag. Let's pretend again that there is no atmosphere, so there is no drag to slow the baseball down. Now, let's assume that the person throwing the ball throws it so fast that as the ball falls towards the Earth, it also travels so far, before falling even a little, that the Earth's surface curves away from the ball's path.
In other words, the baseball falls as it did before, but the ball is moving so fast that the curvature of the Earth becomes a factor and the Earth "falls away" from the ball. So, theoretically, if a pitcher on a 100 foot (30.48 m) high hill threw a ball straight and fast enough,the ball would circle the Earth at exactly 100 feet and hit the pitcher in the back of the head once it circled the globe! The bad news for the person throwing the ball is that the ball will be traveling at the same speed as when they threw it, which is about 8 km/s or several times faster than a rifle bullet. This would be very bad news if it came back and hit the pitcher, but we'll get to that in a minute.