Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.
Answer:
Check the explanation
Explanation:
This is the step by step explanation to the above question:
![v_i = v [ f_L *(v - v_b) - f_s*(v + v_b)] / [f_L * (v - v_b) + f_s*(v +v_b)]](https://tex.z-dn.net/?f=v_i%20%3D%20v%20%5B%20f_L%20%2A%28v%20-%20v_b%29%20-%20f_s%2A%28v%20%2B%20v_b%29%5D%20%2F%20%5Bf_L%20%2A%20%28v%20-%20v_b%29%20%2B%20f_s%2A%28v%20%2Bv_b%29%5D)
= v * (83.1 * (v-4.3) - 80.7 ( v+4.3))/ [83.1 *(v - 4.3) + 80.7*(v + 4.3)]
v = 344 m/s
vi = 344 * ( 83.1* (344-4.3) - 80.7*(344+4.3) ) / (83.1 *(344 - 4.3) + 80.7*(344 + 4.3))
= 0.74 m/s
Because of Gravity, Basically a force so strong it constantly pulls us to the earth with 1 G (Maybe 100 pounds of force constantly pulling us to the earth)
Answer:
What are we supposed to find, if it is kinetic energy then this is the solution.
K.E=1/2mv^2
K.E= kinetic energy
M=mass
V=velocity
K.E =0.5*55*0.6^2
K.E=9.9J
Explanation:
The final velocity is 5.87 m/s
<u>Explanation:</u>
Given-
mass,
= 72 kg
speed,
= 5.8 m/s
,
= 45 kg
,
= 12 m/s
Θ = 60°
Final velocity, v = ?
Applying the conservation of momentum:
X
+
X
= (
+
) v
72 X 5.8 + 45 X 12 X cos 60° = (72 + 45) v
v = 417.6 + 540 X 
v = 417.6 + 
v = 5.87 m/s
The final velocity is 5.87 m/s